mmdeploy/csrc/apis/c/segmentor.h
lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

59 lines
2.5 KiB
C

// Copyright (c) OpenMMLab. All rights reserved.
#ifndef MMDEPLOY_SEGMENTOR_H
#define MMDEPLOY_SEGMENTOR_H
#include "common.h"
typedef struct mm_segment_t {
int height; ///< height of `mask` that equals to the input image's height
int width; ///< width of `mask` that equals to the input image's width
int classes; ///< the number of labels in `mask`
int* mask; ///< segmentation mask of the input image, in which `mask[i * width + j]` indicates
///< the `label_id` of pixel at `(i, j)`
} mm_segment_t;
MM_SDK_API int mmdeploy_segmentor_create(mm_model_t model, const char* device_name, int device_id,
mm_handle_t* handle);
/**
* @brief Create segmentor's handle
* @param model_path segmentor's config which is supposed to be json. Refer to
* `@PROJECT_ROOT_DIR/config/segmentor/fcn_config.json`
* @param device_name name of device, such as "cpu", "cuda" and etc.
* @param device_id id of device.
* @param handle instance of a segmentor
* @return status of creating segmentor's handle
*/
MM_SDK_API int mmdeploy_segmentor_create_by_path(const char* model_path, const char* device_name,
int device_id, mm_handle_t* handle);
/**
* @brief Apply segmentor to batch images and get their inference results
* @param handle segmentor's handle made by `mmdeploy_segmentor_create_by_path`
* @param mats batch images
* @param mat_count number of images in a batch
* @param results a consecutive buffer to save segmentation results of each
* image. The length of `results` equals to `mat_count` if this function returns success. It should
* be destroyed by calling `mmdeploy_segmentor_release_result`.
* @return status of inference
*/
MM_SDK_API int mmdeploy_segmentor_apply(mm_handle_t handle, const mm_mat_t* mats, int mat_count,
mm_segment_t** results);
/** @brief release the inference result buffer
* @param results a consecutive buffer to save images' segmentation results,
* which is created by `mmdeploy_segmentor_apply`
* @param count the length of buffer `results` that equals to `mat_count` in
* `mmdeploy_segmentor_apply`
*/
MM_SDK_API void mmdeploy_segmentor_release_result(mm_segment_t* results, int count);
/**
* @brief destroy segmentor's handle
* @param handle segmentor's handle made by `mmdeploy_segmentor_create_by_path`
*/
MM_SDK_API void mmdeploy_segmentor_destroy(mm_handle_t handle);
#endif // MMDEPLOY_SEGMENTOR_H