mmdeploy/tests/test_codebase/test_mmcls/test_classification_model.py
2022-06-22 22:32:14 +08:00

76 lines
2.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmengine import Config
import mmdeploy.backend.onnxruntime as ort_apis
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Backend, Codebase
from mmdeploy.utils.test import SwitchBackendWrapper, backend_checker
IMAGE_SIZE = 64
import_codebase(Codebase.MMCLS)
@backend_checker(Backend.ONNXRUNTIME)
class TestEnd2EndModel:
@classmethod
def setup_class(cls):
# force add backend wrapper regardless of plugins
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
# simplify backend inference
cls.wrapper = SwitchBackendWrapper(ORTWrapper)
cls.outputs = {
'outputs': torch.rand(1, 100),
}
cls.wrapper.set(outputs=cls.outputs)
deploy_cfg = Config({'onnx_config': {'output_names': ['outputs']}})
from mmdeploy.codebase.mmcls.deploy.classification_model import \
End2EndModel
cls.end2end_model = End2EndModel(
Backend.ONNXRUNTIME, [''], device='cpu', deploy_cfg=deploy_cfg)
@classmethod
def teardown_class(cls):
cls.wrapper.recover()
def test_forward(self):
imgs = torch.rand(1, 3, IMAGE_SIZE, IMAGE_SIZE)
from mmcls.core import ClsDataSample
data_sample = ClsDataSample(
metainfo=dict(
scale_factor=(1, 1),
ori_shape=(IMAGE_SIZE, IMAGE_SIZE),
img_shape=(IMAGE_SIZE, IMAGE_SIZE)))
results = self.end2end_model.forward(
imgs, [data_sample], mode='predict')
assert results is not None, 'failed to get output using '\
'End2EndModel'
@backend_checker(Backend.ONNXRUNTIME)
def test_build_classification_model():
model_cfg = Config(dict(data=dict(test={'type': 'ImageNet'})))
deploy_cfg = Config(
dict(
backend_config=dict(type='onnxruntime'),
onnx_config=dict(output_names=['outputs']),
codebase_config=dict(type='mmcls')))
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
# simplify backend inference
with SwitchBackendWrapper(ORTWrapper) as wrapper:
wrapper.set(model_cfg=model_cfg, deploy_cfg=deploy_cfg)
from mmdeploy.codebase.mmcls.deploy.classification_model import (
End2EndModel, build_classification_model)
classifier = build_classification_model([''], model_cfg, deploy_cfg,
'cpu')
assert isinstance(classifier, End2EndModel)