mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* [Refactor] add enum class and use functions to get configuration (#40) * add task and codebase enum class * use funcitons to get config * Refactor wrappers of mmcls and mmseg (#41) * move wrappers of cls & det to apis * remove get_classes_from_config * rename onnx_helper to onnx_utils * move import to outside of class * refactor ortwrappers * Refactor build dataset and dataloader for mmseg (#44) * refactor build_dataset and build_dataloader for mmcls and mmseg * remove repeated classes * set build_dataloader with shuffle=False * [Refactor] pplwrapper and mmocr refactor (#46) * add * add pplwrapper and refactor mmocr * fix lint * remove unused arguments * apply dict input for pplwrapper and ortwrapper * add condition before import ppl and ort stuff * update ppl (#51) * Refactor return value and extract_model (#54) * remove ret_value * refactor extract_model * fix typo * resolve comments * [Refactor] Refactor model inference pipeline (#52) * move attribute_to_dict to extract_model * simplify the inference and visualization * remove unused import * [Feature] Support SRCNN in mmedit with ONNXRuntime and TensorRT (#45) * finish mmedit-ort * edit __init__ files * add noqa * add tensorrt support * 1. Rename "base.py" 2. Move srcnn.py to correct directory * fix bugs * remove figures * align to refactor-v1 * update comment in srcnn * fix lint * newfunc -> new_func * Add visualize.py split visualize() in each codebase * fix lint * fix lint * remove unnecessary code in ORTRestorer * remove .api * edit super(), remove dataset * [Refactor]: Change name of split to partition (#57) * refactor mmcls configs * refactor mmdet configs and split params * rename rest split to partition from master * remove base.py * fix init of inference class * fix mmocr init, add show_result alias Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com> Co-authored-by: RunningLeon <maningsheng@sensetime.com> Co-authored-by: Yifan Zhou <singlezombie@163.com>
[Feature] Merge NCNN deployment to grimoire based on mmcls - revert [#25](https://github.com/grimoire/deploy_prototype/pull/25) (#30)
…
MMDeployment
Installation
-
Build backend ops
-
update submodule
git submodule update --init
-
Build with onnxruntime support
mkdir build cd build cmake -DBUILD_ONNXRUNTIME_OPS=ON -DONNXRUNTIME_DIR=${PATH_TO_ONNXRUNTIME} .. make -j10
-
Build with tensorrt support
mkdir build cd build cmake -DBUILD_TENSORRT_OPS=ON -DTENSORRT_DIR=${PATH_TO_TENSORRT} .. make -j10
-
Build with ncnn support
mkdir build cd build cmake -DBUILD_NCNN_OPS=ON -DNCNN_DIR=${PATH_TO_NCNN} .. make -j10
-
Or you can add multiple flags to build multiple backend ops.
-
-
Setup project
python setup.py develop
Usage
python ./tools/deploy.py \
${DEPLOY_CFG_PATH} \
${MODEL_CFG_PATH} \
${MODEL_CHECKPOINT_PATH} \
${INPUT_IMG} \
--work-dir ${WORK_DIR} \
--device ${DEVICE} \
--log-level INFO
Description
OpenMMLab Model Deployment Framework
computer-visiondeep-learningdeploymentmmdetectionmmsegmentationmodel-converterncnnonnxonnxruntimeopenvinopplnnpytorchsdktensorrt
Readme
187 MiB
Languages
Python
46.6%
C++
41.3%
Cuda
4.4%
CMake
2%
C#
1.9%
Other
3.8%