mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* [Refactor] add enum class and use functions to get configuration (#40) * add task and codebase enum class * use funcitons to get config * Refactor wrappers of mmcls and mmseg (#41) * move wrappers of cls & det to apis * remove get_classes_from_config * rename onnx_helper to onnx_utils * move import to outside of class * refactor ortwrappers * Refactor build dataset and dataloader for mmseg (#44) * refactor build_dataset and build_dataloader for mmcls and mmseg * remove repeated classes * set build_dataloader with shuffle=False * [Refactor] pplwrapper and mmocr refactor (#46) * add * add pplwrapper and refactor mmocr * fix lint * remove unused arguments * apply dict input for pplwrapper and ortwrapper * add condition before import ppl and ort stuff * update ppl (#51) * Refactor return value and extract_model (#54) * remove ret_value * refactor extract_model * fix typo * resolve comments * [Refactor] Refactor model inference pipeline (#52) * move attribute_to_dict to extract_model * simplify the inference and visualization * remove unused import * [Feature] Support SRCNN in mmedit with ONNXRuntime and TensorRT (#45) * finish mmedit-ort * edit __init__ files * add noqa * add tensorrt support * 1. Rename "base.py" 2. Move srcnn.py to correct directory * fix bugs * remove figures * align to refactor-v1 * update comment in srcnn * fix lint * newfunc -> new_func * Add visualize.py split visualize() in each codebase * fix lint * fix lint * remove unnecessary code in ORTRestorer * remove .api * edit super(), remove dataset * [Refactor]: Change name of split to partition (#57) * refactor mmcls configs * refactor mmdet configs and split params * rename rest split to partition from master * remove base.py * fix init of inference class * fix mmocr init, add show_result alias Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com> Co-authored-by: RunningLeon <maningsheng@sensetime.com> Co-authored-by: Yifan Zhou <singlezombie@163.com>
241 lines
7.6 KiB
Python
241 lines
7.6 KiB
Python
import os.path as osp
|
|
import shutil
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from mmdeploy.apis import torch2onnx
|
|
|
|
backend = 'default'
|
|
work_dir = './tmp/'
|
|
save_file = 'tmp.onnx'
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def clear_workdir_after_test():
|
|
# clear work_dir before test
|
|
if osp.exists(work_dir):
|
|
shutil.rmtree(work_dir)
|
|
|
|
yield
|
|
|
|
# clear work_dir after test
|
|
if osp.exists(work_dir):
|
|
shutil.rmtree(work_dir)
|
|
|
|
|
|
def test_torch2onnx_mmcls():
|
|
codebase = 'mmcls'
|
|
# skip if codebase is not installed
|
|
pytest.importorskip(codebase, reason='Can not import {}.'.format(codebase))
|
|
|
|
# deploy config
|
|
deploy_cfg = mmcv.Config(
|
|
dict(
|
|
codebase=codebase,
|
|
backend=backend,
|
|
pytorch2onnx=dict(
|
|
export_params=True,
|
|
keep_initializers_as_inputs=False,
|
|
opset_version=11,
|
|
save_file=save_file,
|
|
input_names=['input'],
|
|
output_names=['output'],
|
|
dynamic_axes={'input': {
|
|
0: 'batch'
|
|
}})))
|
|
|
|
img_norm_cfg = dict(
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
to_rgb=True)
|
|
dataset_type = 'ImageNet'
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='Resize', size=(256, -1)),
|
|
dict(type='CenterCrop', crop_size=224),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='Collect', keys=['img'])
|
|
]
|
|
|
|
# model config
|
|
model_cfg = mmcv.Config(
|
|
dict(
|
|
model=dict(
|
|
type='ImageClassifier',
|
|
backbone=dict(
|
|
type='ResNet',
|
|
depth=18,
|
|
num_stages=4,
|
|
out_indices=(3, ),
|
|
style='pytorch'),
|
|
neck=dict(type='GlobalAveragePooling'),
|
|
head=dict(
|
|
type='LinearClsHead',
|
|
num_classes=1000,
|
|
in_channels=512,
|
|
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
|
topk=(1, 5),
|
|
)),
|
|
dataset_type=dataset_type,
|
|
img_norm_cfg=img_norm_cfg,
|
|
test_pipeline=test_pipeline,
|
|
data=dict(
|
|
samples_per_gpu=32,
|
|
workers_per_gpu=2,
|
|
test=dict(
|
|
type=dataset_type,
|
|
data_prefix='data/imagenet/val',
|
|
ann_file='data/imagenet/meta/val.txt',
|
|
pipeline=test_pipeline))))
|
|
|
|
# dummy input
|
|
img = np.random.randint(0, 256, (224, 224, 3), dtype=np.uint8)
|
|
|
|
# export
|
|
torch2onnx(
|
|
img,
|
|
work_dir=work_dir,
|
|
save_file=save_file,
|
|
deploy_cfg=deploy_cfg,
|
|
model_cfg=model_cfg,
|
|
device='cpu')
|
|
|
|
assert osp.exists(work_dir)
|
|
assert osp.exists(osp.join(work_dir, save_file))
|
|
|
|
|
|
def test_torch2onnx_mmdet():
|
|
codebase = 'mmdet'
|
|
# skip if codebase is not installed
|
|
pytest.importorskip(codebase, reason='Can not import {}.'.format(codebase))
|
|
|
|
deploy_cfg = mmcv.Config(
|
|
dict(
|
|
codebase=codebase,
|
|
backend=backend,
|
|
pytorch2onnx=dict(
|
|
export_params=True,
|
|
keep_initializers_as_inputs=False,
|
|
opset_version=11,
|
|
save_file=save_file,
|
|
input_names=['input'],
|
|
output_names=['dets', 'labels'],
|
|
dynamic_axes={'input': {
|
|
0: 'batch',
|
|
2: 'height',
|
|
3: 'width'
|
|
}}),
|
|
post_processing=dict(
|
|
score_threshold=0.05,
|
|
iou_threshold=0.5,
|
|
max_output_boxes_per_class=200,
|
|
pre_top_k=-1,
|
|
keep_top_k=100,
|
|
background_label_id=-1)))
|
|
|
|
img_norm_cfg = dict(
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
to_rgb=True)
|
|
dataset_type = 'CocoDataset'
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='MultiScaleFlipAug',
|
|
img_scale=(1333, 800),
|
|
flip=False,
|
|
transforms=[
|
|
dict(type='Resize', keep_ratio=True),
|
|
dict(type='RandomFlip'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='Pad', size_divisor=32),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='Collect', keys=['img']),
|
|
])
|
|
]
|
|
|
|
model_cfg = mmcv.Config(
|
|
dict(
|
|
model=dict(
|
|
type='RetinaNet',
|
|
pretrained='torchvision://resnet50',
|
|
backbone=dict(
|
|
type='ResNet',
|
|
depth=50,
|
|
num_stages=4,
|
|
out_indices=(0, 1, 2, 3),
|
|
frozen_stages=1,
|
|
norm_cfg=dict(type='BN', requires_grad=True),
|
|
norm_eval=True,
|
|
style='pytorch'),
|
|
neck=dict(
|
|
type='FPN',
|
|
in_channels=[256, 512, 1024, 2048],
|
|
out_channels=256,
|
|
start_level=1,
|
|
add_extra_convs='on_input',
|
|
num_outs=5),
|
|
bbox_head=dict(
|
|
type='RetinaHead',
|
|
num_classes=80,
|
|
in_channels=256,
|
|
stacked_convs=4,
|
|
feat_channels=256,
|
|
anchor_generator=dict(
|
|
type='AnchorGenerator',
|
|
octave_base_scale=4,
|
|
scales_per_octave=3,
|
|
ratios=[0.5, 1.0, 2.0],
|
|
strides=[8, 16, 32, 64, 128]),
|
|
bbox_coder=dict(
|
|
type='DeltaXYWHBBoxCoder',
|
|
target_means=[.0, .0, .0, .0],
|
|
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
|
loss_cls=dict(
|
|
type='FocalLoss',
|
|
use_sigmoid=True,
|
|
gamma=2.0,
|
|
alpha=0.25,
|
|
loss_weight=1.0),
|
|
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
|
# model training and testing settings
|
|
train_cfg=dict(
|
|
assigner=dict(
|
|
type='MaxIoUAssigner',
|
|
pos_iou_thr=0.5,
|
|
neg_iou_thr=0.4,
|
|
min_pos_iou=0,
|
|
ignore_iof_thr=-1),
|
|
allowed_border=-1,
|
|
pos_weight=-1,
|
|
debug=False),
|
|
test_cfg=dict(
|
|
nms_pre=1000,
|
|
min_bbox_size=0,
|
|
score_thr=0.05,
|
|
nms=dict(type='nms', iou_threshold=0.5),
|
|
max_per_img=100)),
|
|
dataset_type=dataset_type,
|
|
img_norm_cfg=img_norm_cfg,
|
|
test_pipeline=test_pipeline,
|
|
data=dict(
|
|
samples_per_gpu=2,
|
|
workers_per_gpu=2,
|
|
test=dict(type=dataset_type, pipeline=test_pipeline))))
|
|
|
|
img = np.random.randint(0, 256, (640, 960, 3), dtype=np.uint8)
|
|
|
|
torch2onnx(
|
|
img,
|
|
work_dir=work_dir,
|
|
save_file=save_file,
|
|
deploy_cfg=deploy_cfg,
|
|
model_cfg=model_cfg,
|
|
device='cpu')
|
|
|
|
assert osp.exists(work_dir)
|
|
assert osp.exists(osp.join(work_dir, save_file))
|