mmdeploy/tools/regression_test.py

1249 lines
46 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import logging
import subprocess
from pathlib import Path
from typing import Union
import mmcv
import openpyxl
import pandas as pd
import yaml
from torch.hub import download_url_to_file
from torch.multiprocessing import set_start_method
import mmdeploy.version
from mmdeploy.utils import (get_backend, get_codebase, get_root_logger,
is_dynamic_shape, load_config)
def parse_args():
parser = argparse.ArgumentParser(description='Regression Test')
parser.add_argument(
'--codebase',
nargs='+',
help='regression test yaml path.',
default=[
'mmcls', 'mmdet', 'mmseg', 'mmpose', 'mmocr', 'mmedit', 'mmrotate'
])
parser.add_argument(
'-p',
'--performance',
default=False,
action='store_true',
help='test performance if it set')
parser.add_argument(
'--backends', nargs='+', help='test specific backend(s)')
parser.add_argument('--models', nargs='+', help='test specific model(s)')
parser.add_argument(
'--work-dir',
type=str,
help='the dir to save logs and models',
default='../mmdeploy_regression_working_dir')
parser.add_argument(
'--checkpoint-dir',
type=str,
help='the dir to save checkpoint for all model',
default='../mmdeploy_checkpoints')
parser.add_argument(
'--device', type=str, help='Device type, cuda or cpu', default='cuda')
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
args = parser.parse_args()
return args
def merge_report(work_dir: str, logger: logging.Logger):
"""Merge all the report into one report.
Args:
work_dir (str): Work dir that including all reports.
logger (logging.Logger): Logger handler.
"""
work_dir = Path(work_dir)
res_file = work_dir.joinpath(
f'mmdeploy_regression_test_{mmdeploy.version.__version__}.xlsx')
logger.info(f'Whole result report saving in {res_file}')
if res_file.exists():
# delete if it existed
res_file.unlink()
for report_file in work_dir.iterdir():
if report_file.name.startswith('.~'):
# skip unclosed temp file
continue
if '_report.xlsx' not in report_file.name or \
report_file.name == res_file.name or \
not report_file.is_file():
# skip other file
continue
# get info from report
logger.info(f'Merging {report_file}')
df = pd.read_excel(str(report_file))
df.rename(columns={'Unnamed: 0': 'Index'}, inplace=True)
# get key then convert to list
keys = list(df.keys())
values = df.values.tolist()
# sheet name
sheet_name = report_file.stem.split('_')[0]
# begin to write
if res_file.exists():
# load if it existed
wb = openpyxl.load_workbook(str(res_file))
else:
wb = openpyxl.Workbook()
# delete if sheet already exist
if sheet_name in wb.sheetnames:
wb.remove(wb[sheet_name])
# create sheet
wb.create_sheet(title=sheet_name, index=0)
# write in row
wb[sheet_name].append(keys)
for value in values:
wb[sheet_name].append(value)
# delete the blank sheet
for name in wb.sheetnames:
ws = wb[name]
if ws.cell(1, 1).value is None:
wb.remove(ws)
# save to file
wb.save(str(res_file))
logger.info('Report merge successful.')
def get_model_metafile_info(global_info: dict, model_info: dict,
logger: logging.Logger):
"""Get model metafile information.
Args:
global_info (dict): global info from deploy yaml.
model_info (dict): model info from deploy yaml.
logger (logging.Logger): Logger handler.
Returns:
Dict: Meta info of each model config
"""
# get info from global_info and model_info
checkpoint_dir = global_info.get('checkpoint_dir', None)
assert checkpoint_dir is not None
codebase_dir = global_info.get('codebase_dir', None)
assert codebase_dir is not None
codebase_name = global_info.get('codebase_name', None)
assert codebase_name is not None
model_config_files = model_info.get('model_configs', [])
assert len(model_config_files) > 0
# make checkpoint save directory
model_name = _filter_string(model_info.get('name', 'model'))
checkpoint_save_dir = Path(checkpoint_dir).joinpath(
codebase_name, model_name)
checkpoint_save_dir.mkdir(parents=True, exist_ok=True)
logger.info(f'Saving checkpoint in {checkpoint_save_dir}')
# get model metafile info
metafile_path = Path(codebase_dir).joinpath(model_info.get('metafile'))
with open(metafile_path) as f:
metafile_info = yaml.load(f, Loader=yaml.FullLoader)
model_meta_info = dict()
for meta_model in metafile_info.get('Models'):
if str(meta_model.get('Config')) not in model_config_files:
# skip if the model not in model_config_files
logger.warning(f'{meta_model.get("Config")} '
f'not in {model_config_files}, pls check ! '
'Skip it...')
continue
# get meta info
model_meta_info.update({meta_model.get('Config'): meta_model})
# get weight url
weights_url = meta_model.get('Weights')
weights_name = str(weights_url).split('/')[-1]
weights_save_path = checkpoint_save_dir.joinpath(weights_name)
if weights_save_path.exists() and \
not global_info.get('checkpoint_force_download', False):
logger.info(f'model {weights_name} exist, skip download it...')
continue
# Download weight
logger.info(f'Downloading {weights_url} to {weights_save_path}')
download_url_to_file(
weights_url, str(weights_save_path), progress=True)
# check weather the weight download successful
if not weights_save_path.exists():
raise FileExistsError(f'Weight {weights_name} download fail')
logger.info('All models had been downloaded successful !')
return model_meta_info, checkpoint_save_dir, codebase_dir
def update_report(report_dict: dict, model_name: str, model_config: str,
task_name: str, checkpoint: str, dataset: str,
backend_name: str, deploy_config: str,
static_or_dynamic: str, precision_type: str,
conversion_result: str, fps: str, metric_info: list,
test_pass: str, report_txt_path: Path, codebase_name: str):
"""Update report information.
Args:
report_dict (dict): Report info dict.
model_name (str): Model name.
model_config (str): Model config name.
task_name (str): Task name.
checkpoint (str): Model checkpoint name.
dataset (str): Dataset name.
backend_name (str): Backend name.
deploy_config (str): Deploy config name.
static_or_dynamic (str): Static or dynamic.
precision_type (str): Precision type of the model.
conversion_result (str): Conversion result: Successful or Fail.
fps (str): Inference speed (ms/im).
metric_info (list): Metric info list of the ${modelName}.yml.
test_pass (str): Test result: Pass or Fail.
report_txt_path (Path): Report txt path.
codebase_name (str): Codebase name.
"""
# make model path shorter
if '.pth' in checkpoint:
checkpoint = Path(checkpoint).absolute().resolve()
checkpoint = str(checkpoint).split(f'/{codebase_name}/')[-1]
checkpoint = '${CHECKPOINT_DIR}' + f'/{codebase_name}/{checkpoint}'
else:
if Path(checkpoint).exists():
# To invoice the path which is 'A.a B.b' when test sdk.
checkpoint = Path(checkpoint).absolute().resolve()
elif backend_name == 'ncnn':
# ncnn have 2 backend file but only need xxx.param
checkpoint = checkpoint.split('.param')[0] + '.param'
work_dir = report_txt_path.parent.absolute().resolve()
checkpoint = str(checkpoint).replace(str(work_dir), '${WORK_DIR}')
# save to tmp file
tmp_str = f'{model_name},{model_config},{task_name},{checkpoint},' \
f'{dataset},{backend_name},{deploy_config},' \
f'{static_or_dynamic},{precision_type},{conversion_result},' \
f'{fps},'
# save to report
report_dict.get('Model').append(model_name)
report_dict.get('Model Config').append(model_config)
report_dict.get('Task').append(task_name)
report_dict.get('Checkpoint').append(checkpoint)
report_dict.get('Dataset').append(dataset)
report_dict.get('Backend').append(backend_name)
report_dict.get('Deploy Config').append(deploy_config)
report_dict.get('Static or Dynamic').append(static_or_dynamic)
report_dict.get('Precision Type').append(precision_type)
report_dict.get('Conversion Result').append(conversion_result)
# report_dict.get('FPS').append(fps)
for metric in metric_info:
for metric_name, metric_value in metric.items():
metric_name = str(metric_name)
report_dict.get(metric_name).append(metric_value)
tmp_str += f'{metric_value},'
report_dict.get('Test Pass').append(test_pass)
tmp_str += f'{test_pass}\n'
with open(report_txt_path, 'a+', encoding='utf-8') as f:
f.write(tmp_str)
def get_pytorch_result(model_name: str, meta_info: dict, checkpoint_path: Path,
model_config_path: Path, model_config_name: str,
test_yaml_metric_info: dict, report_dict: dict,
logger: logging.Logger, report_txt_path: Path,
codebase_name: str):
"""Get metric from metafile info of the model.
Args:
model_name (str): Name of model.
meta_info (dict): Metafile info from model's metafile.yml.
checkpoint_path (Path): Checkpoint path.
model_config_path (Path): Model config path.
model_config_name (str): Name of model config in meta_info.
test_yaml_metric_info (dict): Metrics info from test yaml.
report_dict (dict): Report info dict.
logger (logging.Logger): Logger.
report_txt_path (Path): Report txt path.
codebase_name (str): Codebase name.
Returns:
Dict: metric info of the model
"""
if model_config_name not in meta_info:
logger.warning(
f'{model_config_name} not in meta_info, which is {meta_info}')
return {}
# get metric
model_info = meta_info.get(model_config_name, None)
metafile_metric_info = model_info.get('Results', None)
metric_list = []
pytorch_metric = dict()
dataset_type = ''
task_type = ''
# Get dataset
using_dataset = dict()
for _, v in test_yaml_metric_info.items():
if v.get('dataset') is None:
continue
dataset_list = v.get('dataset', [])
if not isinstance(dataset_list, list):
dataset_list = [dataset_list]
for metric_dataset in dataset_list:
dataset_tmp = using_dataset.get(metric_dataset, [])
if v.get('task_name') not in dataset_tmp:
dataset_tmp.append(v.get('task_name'))
using_dataset.update({metric_dataset: dataset_tmp})
# Get metrics info from metafile
for metafile_metric in metafile_metric_info:
pytorch_meta_metric = metafile_metric.get('Metrics')
dataset = metafile_metric.get('Dataset', '')
task_name = metafile_metric.get('Task', '')
if task_name == 'Restorers':
# mmedit
dataset = 'Set5'
if (len(using_dataset) > 1) and (dataset not in using_dataset):
logger.info(f'dataset not in {using_dataset}, skip it...')
continue
dataset_type += f'{dataset} | '
if task_name not in using_dataset.get(dataset, []):
# only add the metric with the correct dataset
logger.info(f'task_name ({task_name}) is not in'
f'{using_dataset.get(dataset, [])}, skip it...')
continue
task_type += f'{task_name} | '
# remove some metric which not in metric_info from test yaml
for k, v in pytorch_meta_metric.items():
if k not in test_yaml_metric_info and \
'Restorers' not in task_type:
continue
if 'Restorers' in task_type and k not in dataset_type:
# mmedit
continue
if isinstance(v, dict):
# mmedit
for sub_k, sub_v in v.items():
use_metric = {sub_k: sub_v}
metric_list.append(use_metric)
pytorch_metric.update(use_metric)
else:
use_metric = {k: v}
metric_list.append(use_metric)
pytorch_metric.update(use_metric)
dataset_type = dataset_type[:-3].upper() # remove the final ' | '
task_type = task_type[:-3] # remove the final ' | '
# update useless metric
metric_all_list = [str(metric) for metric in test_yaml_metric_info]
metric_useless = set(metric_all_list) - set(
[str(metric) for metric in pytorch_metric])
for metric in metric_useless:
metric_list.append({metric: '-'})
# get pytorch fps value
fps_info = model_info.get('Metadata').get('inference time (ms/im)')
if fps_info is None:
fps = '-'
elif isinstance(fps_info, list):
fps = fps_info[0].get('value')
else:
fps = fps_info.get('value')
logger.info(f'Got metric_list = {metric_list} ')
logger.info(f'Got pytorch_metric = {pytorch_metric} ')
# update report
update_report(
report_dict=report_dict,
model_name=model_name,
model_config=str(model_config_path),
task_name=task_type,
checkpoint=str(checkpoint_path),
dataset=dataset_type,
backend_name='Pytorch',
deploy_config='-',
static_or_dynamic='-',
precision_type='-',
conversion_result='-',
fps=fps,
metric_info=metric_list,
test_pass='-',
report_txt_path=report_txt_path,
codebase_name=codebase_name)
logger.info(f'Got {model_config_path} metric: {pytorch_metric}')
return pytorch_metric, dataset_type
def get_info_from_log_file(info_type: str, log_path: Path,
yaml_metric_key: str, logger: logging.Logger):
"""Get fps and metric result from log file.
Args:
info_type (str): Get which type of info: 'FPS' or 'metric'.
log_path (Path): Logger path.
yaml_metric_key (str): Name of metric from yaml metric_key.
logger (logger.Logger): Logger handler.
Returns:
Float: Info value which get from logger file.
"""
if log_path.exists():
with open(log_path, 'r') as f_log:
lines = f_log.readlines()
else:
logger.warning(f'{log_path} do not exist !!!')
lines = []
if info_type == 'FPS' and len(lines) > 1:
# Get FPS
line_count = 0
fps_sum = 0.00
fps_lines = lines[1:11]
for line in fps_lines:
if 'FPS' not in line:
continue
line_count += 1
fps_sum += float(line.split(' ')[-2])
if fps_sum > 0.00:
info_value = f'{fps_sum / line_count:.2f}'
else:
info_value = 'x'
elif info_type == 'metric' and len(lines) > 1:
# To calculate the final line index
if lines[-1] != '' and lines[-1] != '\n':
line_index = -1
else:
line_index = -2
if yaml_metric_key == 'mIoU':
metric_line = lines[-1]
info_value = metric_line.split('mIoU: ')[1].split(' ')[0]
info_value = float(info_value)
return info_value
elif yaml_metric_key in ['accuracy_top-1', 'Eval-PSNR']:
# info in last second line
# mmcls, mmeg, mmedit
metric_line = lines[line_index - 1]
elif yaml_metric_key == 'AP':
# info in last tenth line
# mmpose
metric_line = lines[line_index - 9]
elif yaml_metric_key == 'AR':
# info in last fifth line
# mmpose
metric_line = lines[line_index - 4]
else:
# info in final line
# mmdet
metric_line = lines[line_index]
logger.info(f'Got metric_line = {metric_line}')
metric_str = \
metric_line.replace('\n', '').replace('\r', '').split(' - ')[-1]
logger.info(f'Got metric_str = {metric_str}')
logger.info(f'Got metric_info = {yaml_metric_key}')
if 'accuracy_top' in metric_str:
# mmcls
metric = eval(metric_str.split(': ')[-1])
if metric <= 1:
metric *= 100
elif yaml_metric_key == 'mIoU' and '|' in metric_str:
# mmseg
metric = eval(metric_str.strip().split('|')[2])
if metric <= 1:
metric *= 100
elif yaml_metric_key in ['AP', 'AR']:
# mmpose
metric = eval(metric_str.split(': ')[-1])
elif yaml_metric_key == '0_word_acc_ignore_case' or \
yaml_metric_key == '0_hmean-iou:hmean':
# mmocr
evaluate_result = eval(metric_str)
if not isinstance(evaluate_result, dict):
logger.warning(f'Got error metric_dict = {metric_str}')
return 'x'
metric = evaluate_result.get(yaml_metric_key, 0.00)
if yaml_metric_key == '0_word_acc_ignore_case':
metric *= 100
elif yaml_metric_key in ['Eval-PSNR', 'Eval-SSIM']:
# mmedit
metric = eval(metric_str.split(': ')[-1])
elif 'bbox' in metric_str:
# mmdet
value_list = metric_str.split(' ')
for value in value_list:
if yaml_metric_key + ':' in value:
metric = float(value.split(' ')[-1]) * 100
break
else:
metric = 'x'
info_value = metric
else:
info_value = 'x'
return info_value
def compare_metric(metric_value: float, metric_name: str, pytorch_metric: dict,
metric_info: dict):
"""Compare metric value with the pytorch metric value and the tolerance.
Args:
metric_value (float): Metric value.
metric_name (str): metric name.
pytorch_metric (dict): Pytorch metric which get from metafile.
metric_info (dict): Metric info from test yaml.
Returns:
Bool: If the test pass or not.
"""
if metric_value == 'x':
return False
metric_pytorch = pytorch_metric.get(str(metric_name))
tolerance_value = metric_info.get(metric_name, {}).get('tolerance', 0.00)
if (metric_value - tolerance_value) <= metric_pytorch <= \
(metric_value + tolerance_value):
test_pass = True
else:
test_pass = False
return test_pass
def get_fps_metric(shell_res: int, pytorch_metric: dict, metric_key: str,
yaml_metric_info_name: str, log_path: Path,
metrics_eval_list: dict, metric_info: dict,
logger: logging.Logger):
"""Get fps and metric.
Args:
shell_res (int): Backend convert result: 0 is success.
pytorch_metric (dict): Metric info of pytorch metafile.
metric_key (str):Metric info.
yaml_metric_info_name (str): Name of metric info in test yaml.
log_path (Path): Logger path.
metrics_eval_list (dict): Metric list from test yaml.
metric_info (dict): Metric info.
logger (logger.Logger): Logger handler.
Returns:
Float: fps: FPS of the model.
List: metric_list: metric result list.
Bool: test_pass: If the test pass or not.
"""
metric_list = []
# check if converted successes or not.
if shell_res != 0:
fps = 'x'
metric_value = 'x'
else:
# Got fps from log file
fps = get_info_from_log_file('FPS', log_path, metric_key, logger)
# logger.info(f'Got fps = {fps}')
# Got metric from log file
metric_value = get_info_from_log_file('metric', log_path, metric_key,
logger)
logger.info(f'Got metric = {metric_value}')
if yaml_metric_info_name is None:
logger.error(f'metrics_eval_list: {metrics_eval_list} '
'has not metric name')
assert yaml_metric_info_name is not None
metric_list.append({yaml_metric_info_name: metric_value})
test_pass = compare_metric(metric_value, yaml_metric_info_name,
pytorch_metric, metric_info)
# same eval_name and multi metric output in one test
if yaml_metric_info_name == 'Top 1 Accuracy':
# mmcls
yaml_metric_info_name = 'Top 5 Accuracy'
second_get_metric = True
elif yaml_metric_info_name == 'AP':
# mmpose
yaml_metric_info_name = 'AR'
second_get_metric = True
elif yaml_metric_info_name == 'PSNR':
# mmedit
yaml_metric_info_name = 'SSIM'
second_get_metric = True
else:
second_get_metric = False
if second_get_metric:
metric_key = metric_info.get(yaml_metric_info_name).get('metric_key')
if shell_res != 0:
metric_value = 'x'
else:
metric_value = get_info_from_log_file('metric', log_path,
metric_key, logger)
metric_list.append({yaml_metric_info_name: metric_value})
if test_pass:
test_pass = compare_metric(metric_value, yaml_metric_info_name,
pytorch_metric, metric_info)
return fps, metric_list, test_pass
def get_backend_fps_metric(deploy_cfg_path: str, model_cfg_path: Path,
convert_checkpoint_path: str, device_type: str,
eval_name: str, logger: logging.Logger,
metrics_eval_list: dict, pytorch_metric: dict,
metric_info: dict, backend_name: str,
precision_type: str, metric_useless: set,
convert_result: bool, report_dict: dict,
infer_type: str, log_path: Path, dataset_type: str,
report_txt_path: Path, model_name: str):
"""Get backend fps and metric.
Args:
deploy_cfg_path (str): Deploy config path.
model_cfg_path (Path): Model config path.
convert_checkpoint_path (str): Converted checkpoint path.
device_type (str): Device for converting.
eval_name (str): Name of evaluation.
logger (logging.Logger): Logger handler.
metrics_eval_list (dict): Evaluation metric info dict.
pytorch_metric (dict): Pytorch metric info dict get from metafile.
metric_info (dict): Metric info from test yaml.
backend_name (str): Backend name.
precision_type (str): Precision type for evaluation.
metric_useless (set): Useless metric for specific the model.
convert_result (bool): Backend convert result.
report_dict (dict): Backend convert result.
infer_type (str): Infer type.
log_path (Path): Logger save path.
dataset_type (str): Dataset type.
report_txt_path (Path): report txt save path.
model_name (str): Name of model in test yaml.
"""
cmd_str = 'python3 tools/test.py ' \
f'{deploy_cfg_path} ' \
f'{str(model_cfg_path.absolute())} ' \
f'--model {convert_checkpoint_path} ' \
f'--log2file "{log_path}" ' \
f'--speed-test ' \
f'--device {device_type} '
codebase_name = get_codebase(str(deploy_cfg_path)).value
logger.info(f'Process cmd = {cmd_str}')
# Test backend
shell_res = subprocess.run(
cmd_str, cwd=str(Path(__file__).absolute().parent.parent),
shell=True).returncode
logger.info(f'Got shell_res = {shell_res}')
metric_key = ''
metric_name = ''
task_name = ''
for key, value in metric_info.items():
if value.get('eval_name', '') == eval_name:
metric_name = key
metric_key = value.get('metric_key', '')
task_name = value.get('task_name', '')
break
logger.info(f'Got metric_name = {metric_name}')
logger.info(f'Got metric_key = {metric_key}')
fps, metric_list, test_pass = \
get_fps_metric(shell_res, pytorch_metric, metric_key, metric_name,
log_path, metrics_eval_list, metric_info, logger)
# update useless metric
for metric in metric_useless:
metric_list.append({metric: '-'})
if len(metrics_eval_list) > 1 and codebase_name == 'mmdet':
# one model has more than one task, like Mask R-CNN
for name in pytorch_metric:
if name in metric_useless or name == metric_name:
continue
metric_list.append({name: '-'})
# update the report
update_report(
report_dict=report_dict,
model_name=model_name,
model_config=str(model_cfg_path),
task_name=task_name,
checkpoint=convert_checkpoint_path,
dataset=dataset_type,
backend_name=backend_name,
deploy_config=str(deploy_cfg_path),
static_or_dynamic=infer_type,
precision_type=precision_type,
conversion_result=str(convert_result),
fps=fps,
metric_info=metric_list,
test_pass=str(test_pass),
report_txt_path=report_txt_path,
codebase_name=codebase_name)
def get_precision_type(deploy_cfg_name: str):
"""Get backend precision_type according to the name of deploy config.
Args:
deploy_cfg_name (str): Name of the deploy config.
Returns:
Str: precision_type: Precision type of the deployment name.
"""
if 'int8' in deploy_cfg_name:
precision_type = 'int8'
elif 'fp16' in deploy_cfg_name:
precision_type = 'fp16'
else:
precision_type = 'fp32'
return precision_type
def replace_top_in_pipeline_json(backend_output_path: Path,
logger: logging.Logger):
"""Replace `topk` with `num_classes` in `pipeline.json`.
Args:
backend_output_path (Path): Backend convert result path.
logger (logger.Logger): Logger handler.
"""
sdk_pipeline_json_path = backend_output_path.joinpath('pipeline.json')
sdk_pipeline_json = mmcv.load(sdk_pipeline_json_path)
pipeline_tasks = sdk_pipeline_json.get('pipeline', {}).get('tasks', [])
for index, task in enumerate(pipeline_tasks):
if task.get('name', '') != 'postprocess':
continue
num_classes = task.get('params', {}).get('num_classes', 0)
if 'topk' not in task.get('params', {}):
continue
sdk_pipeline_json['pipeline']['tasks'][index]['params']['topk'] = \
num_classes
logger.info(f'sdk_pipeline_json = {sdk_pipeline_json}')
mmcv.dump(
sdk_pipeline_json, sdk_pipeline_json_path, sort_keys=False, indent=4)
logger.info('replace done')
def gen_log_path(backend_output_path: Path, log_name: str):
log_path = backend_output_path.joinpath(log_name).absolute().resolve()
if log_path.exists():
# clear the log file
with open(log_path, 'w') as f_log:
f_log.write('')
return log_path
def get_backend_result(pipeline_info: dict, model_cfg_path: Path,
checkpoint_path: Path, work_dir: Path, device_type: str,
pytorch_metric: dict, metric_info: dict,
report_dict: dict, test_type: str,
logger: logging.Logger, backend_file_name: Union[str,
list],
report_txt_path: Path, metafile_dataset: str,
model_name: str):
"""Convert model to onnx and then get metric.
Args:
pipeline_info (dict): Pipeline info of test yaml.
model_cfg_path (Path): Model config file path.
checkpoint_path (Path): Checkpoints path.
work_dir (Path): A working directory.
device_type (str): A string specifying device, defaults to 'cuda'.
pytorch_metric (dict): All pytorch metric info.
metric_info (dict): Metrics info.
report_dict (dict): Report info dict.
test_type (str): Test type. 'precision' or 'convert'.
logger (logging.Logger): Logger.
backend_file_name (str | list): backend file save name.
report_txt_path (Path): report txt path.
metafile_dataset (str): Dataset type get from metafile.
model_name (str): Name of model in test yaml.
"""
# get backend_test info
backend_test = pipeline_info.get('backend_test', False)
# get convert_image info
convert_image_info = pipeline_info.get('convert_image', None)
if convert_image_info is not None:
input_img_path = \
convert_image_info.get('input_img', './tests/data/tiger.jpeg')
test_img_path = convert_image_info.get('test_img', None)
else:
input_img_path = './tests/data/tiger.jpeg'
test_img_path = None
# get sdk_cfg info
sdk_config = pipeline_info.get('sdk_config', None)
if sdk_config is not None:
sdk_config = Path(sdk_config)
# Overwrite metric tolerance
metric_tolerance = pipeline_info.get('metric_tolerance', None)
if metric_tolerance is not None:
for metric, new_tolerance in metric_tolerance.items():
if metric not in metric_info:
logger.debug(f'{metric} not in {metric_info},'
'skip compare it...')
continue
if new_tolerance is None:
logger.debug('new_tolerance is None, skip it ...')
continue
metric_info[metric]['tolerance'] = new_tolerance
if backend_test is False and sdk_config is None:
test_type = 'convert'
metric_name_list = [str(metric) for metric in pytorch_metric]
assert len(metric_name_list) > 0
metric_all_list = [str(metric) for metric in metric_info]
metric_useless = set(metric_all_list) - set(metric_name_list)
deploy_cfg_path = Path(pipeline_info.get('deploy_config'))
backend_name = str(get_backend(str(deploy_cfg_path)).name).lower()
# change device_type for special case
if backend_name in ['ncnn', 'openvino']:
device_type = 'cpu'
elif backend_name == 'onnxruntime' and device_type != 'cpu':
import onnxruntime as ort
if ort.get_device() != 'GPU':
device_type = 'cpu'
logger.warning('Device type is forced to cpu '
'since onnxruntime-gpu is not installed')
infer_type = \
'dynamic' if is_dynamic_shape(str(deploy_cfg_path)) else 'static'
precision_type = get_precision_type(deploy_cfg_path.name)
codebase_name = get_codebase(str(deploy_cfg_path)).value
backend_output_path = Path(work_dir). \
joinpath(Path(checkpoint_path).parent.parent.name,
Path(checkpoint_path).parent.name,
backend_name,
infer_type,
precision_type,
Path(checkpoint_path).stem)
backend_output_path.mkdir(parents=True, exist_ok=True)
# convert cmd string
cmd_str = 'python3 ./tools/deploy.py ' \
f'{str(deploy_cfg_path.absolute().resolve())} ' \
f'{str(model_cfg_path.absolute().resolve())} ' \
f'"{str(checkpoint_path.absolute().resolve())}" ' \
f'"{input_img_path}" ' \
f'--work-dir "{backend_output_path}" ' \
f'--device {device_type} ' \
'--log-level INFO'
if sdk_config is not None and test_type == 'precision':
cmd_str += ' --dump-info'
if test_img_path is not None:
cmd_str += f' --test-img {test_img_path}'
if precision_type == 'int8':
calib_dataset_cfg = pipeline_info.get('calib_dataset_cfg', None)
if calib_dataset_cfg is not None:
cmd_str += f' --calib-dataset-cfg {calib_dataset_cfg}'
logger.info(f'Process cmd = {cmd_str}')
convert_result = False
convert_log_path = backend_output_path.joinpath('convert_log.log')
logger.info(f'Logging conversion log to {convert_log_path} ...')
file_handler = open(convert_log_path, 'w', encoding='utf-8')
try:
# Convert the model to specific backend
process_res = subprocess.Popen(
cmd_str,
cwd=str(Path(__file__).absolute().parent.parent),
shell=True,
stdout=file_handler,
stderr=file_handler)
process_res.wait()
logger.info(f'Got shell_res = {process_res.returncode}')
# check if converted successes or not.
if process_res.returncode == 0:
convert_result = True
else:
convert_result = False
except Exception as e:
print(f'process convert error: {e}')
finally:
file_handler.close()
logger.info(f'Got convert_result = {convert_result}')
if isinstance(backend_file_name, list):
convert_checkpoint_path = ''
for backend_file in backend_file_name:
backend_path = backend_output_path.joinpath(backend_file)
backend_path = str(backend_path.absolute().resolve())
convert_checkpoint_path += f'{str(backend_path)} '
else:
convert_checkpoint_path = \
str(backend_output_path.joinpath(backend_file_name))
# load deploy_cfg
deploy_cfg, model_cfg = \
load_config(str(deploy_cfg_path),
str(model_cfg_path.absolute()))
# get dataset type
if 'dataset_type' in model_cfg:
dataset_type = \
str(model_cfg.dataset_type).upper().replace('DATASET', '')
else:
dataset_type = metafile_dataset
# Test the model
if convert_result and test_type == 'precision':
# Get evaluation metric from model config
if codebase_name == 'mmseg':
metrics_eval_list = model_cfg.val_evaluator.iou_metrics
else:
metrics_eval_list = model_cfg.test_evaluator.get('metric', [])
if isinstance(metrics_eval_list, str):
# some config is using str only
metrics_eval_list = [metrics_eval_list]
# assert len(metrics_eval_list) > 0
logger.info(f'Got metrics_eval_list = {metrics_eval_list}')
if len(metrics_eval_list) == 0 and codebase_name == 'mmedit':
metrics_eval_list = ['PSNR']
# test the model metric
for metric_name in metrics_eval_list:
if backend_test:
log_path = \
gen_log_path(backend_output_path, 'backend_test.log')
get_backend_fps_metric(
deploy_cfg_path=str(deploy_cfg_path),
model_cfg_path=model_cfg_path,
convert_checkpoint_path=convert_checkpoint_path,
device_type=device_type,
eval_name=metric_name,
logger=logger,
metrics_eval_list=metrics_eval_list,
pytorch_metric=pytorch_metric,
metric_info=metric_info,
backend_name=backend_name,
precision_type=precision_type,
metric_useless=metric_useless,
convert_result=convert_result,
report_dict=report_dict,
infer_type=infer_type,
log_path=log_path,
dataset_type=dataset_type,
report_txt_path=report_txt_path,
model_name=model_name)
if sdk_config is not None:
if codebase_name == 'mmcls':
replace_top_in_pipeline_json(backend_output_path, logger)
log_path = gen_log_path(backend_output_path, 'sdk_test.log')
# sdk test
get_backend_fps_metric(
deploy_cfg_path=str(sdk_config),
model_cfg_path=model_cfg_path,
convert_checkpoint_path=str(backend_output_path),
device_type=device_type,
eval_name=metric_name,
logger=logger,
metrics_eval_list=metrics_eval_list,
pytorch_metric=pytorch_metric,
metric_info=metric_info,
backend_name=f'SDK-{backend_name}',
precision_type=precision_type,
metric_useless=metric_useless,
convert_result=convert_result,
report_dict=report_dict,
infer_type=infer_type,
log_path=log_path,
dataset_type=dataset_type,
report_txt_path=report_txt_path,
model_name=model_name)
else:
logger.info('Only test convert, saving to report...')
metric_list = []
fps = '-'
task_name = ''
for metric in metric_name_list:
metric_list.append({metric: '-'})
metric_task_name = metric_info.get(metric, {}).get('task_name', '')
if metric_task_name in task_name:
logger.debug('metric_task_name exist, skip for adding it...')
continue
task_name += f'{metric_task_name} | '
if ' | ' == task_name[-3:]:
task_name = task_name[:-3]
test_pass = True if convert_result else False
# update useless metric
for metric in metric_useless:
metric_list.append({metric: '-'})
if convert_result:
report_checkpoint = convert_checkpoint_path
else:
report_checkpoint = str(checkpoint_path)
# update the report
update_report(
report_dict=report_dict,
model_name=model_name,
model_config=str(model_cfg_path),
task_name=task_name,
checkpoint=report_checkpoint,
dataset=dataset_type,
backend_name=backend_name,
deploy_config=str(deploy_cfg_path),
static_or_dynamic=infer_type,
precision_type=precision_type,
conversion_result=str(convert_result),
fps=fps,
metric_info=metric_list,
test_pass=str(test_pass),
report_txt_path=report_txt_path,
codebase_name=codebase_name)
def save_report(report_info: dict, report_save_path: Path,
logger: logging.Logger):
"""Convert model to onnx and then get metric.
Args:
report_info (dict): Report info dict.
report_save_path (Path): Report save path.
logger (logging.Logger): Logger.
"""
logger.info('Saving regression test report to '
f'{report_save_path.absolute().resolve()}, pls wait...')
try:
df = pd.DataFrame(report_info)
df.to_excel(report_save_path)
except ValueError:
logger.info(f'Got error report_info = {report_info}')
logger.info('Saved regression test report to '
f'{report_save_path.absolute().resolve()}.')
def _filter_string(inputs):
"""Remove non alpha&number character from input string.
Args:
inputs(str): Input string.
Returns:
str: Output of only alpha&number string.
"""
outputs = ''.join([i.lower() for i in inputs if i.isalnum()])
return outputs
def main():
args = parse_args()
set_start_method('spawn')
logger = get_root_logger(log_level=args.log_level)
test_type = 'precision' if args.performance else 'convert'
logger.info(f'Processing regression test in {test_type} mode.')
backend_file_info = {
'onnxruntime': 'end2end.onnx',
'tensorrt': 'end2end.engine',
'openvino': 'end2end.xml',
'ncnn': ['end2end.param', 'end2end.bin'],
'pplnn': ['end2end.onnx', 'end2end.json'],
'torchscript': 'end2end.pt'
}
backend_list = args.backends
if backend_list is None:
backend_list = [
'onnxruntime', 'tensorrt', 'openvino', 'ncnn', 'pplnn',
'torchscript'
]
assert isinstance(backend_list, list)
logger.info(f'Regression test backend list = {backend_list}')
if args.models is None:
logger.info('Regression test for all models in test yaml.')
else:
args.models = tuple([_filter_string(s) for s in args.models])
logger.info(f'Regression test models list = {args.models}')
assert ' ' not in args.work_dir, \
f'No empty space included in {args.work_dir}'
assert ' ' not in args.checkpoint_dir, \
f'No empty space included in {args.checkpoint_dir}'
work_dir = Path(args.work_dir)
work_dir.mkdir(parents=True, exist_ok=True)
deploy_yaml_list = [
f'./tests/regression/{codebase}.yml' for codebase in args.codebase
]
for deploy_yaml in deploy_yaml_list:
if not Path(deploy_yaml).exists():
raise FileNotFoundError(f'deploy_yaml {deploy_yaml} not found, '
'please check !')
with open(deploy_yaml) as f:
yaml_info = yaml.load(f, Loader=yaml.FullLoader)
report_save_path = \
work_dir.joinpath(Path(deploy_yaml).stem + '_report.xlsx')
report_txt_path = report_save_path.with_suffix('.txt')
report_dict = {
'Model': [],
'Model Config': [],
'Task': [],
'Checkpoint': [],
'Dataset': [],
'Backend': [],
'Deploy Config': [],
'Static or Dynamic': [],
'Precision Type': [],
'Conversion Result': [],
# 'FPS': []
}
global_info = yaml_info.get('globals')
metric_info = global_info.get('metric_info', {})
for metric_name in metric_info:
report_dict.update({metric_name: []})
report_dict.update({'Test Pass': []})
global_info.update({'checkpoint_dir': args.checkpoint_dir})
global_info.update(
{'codebase_name': Path(deploy_yaml).stem.split('_')[0]})
with open(report_txt_path, 'w') as f_report:
title_str = ''
for key in report_dict:
title_str += f'{key},'
title_str = title_str[:-1] + '\n'
f_report.write(title_str) # clear the report tmp file
models_info = yaml_info.get('models')
for models in models_info:
model_name_origin = models.get('name', 'model')
model_name_new = _filter_string(model_name_origin)
if 'model_configs' not in models:
logger.warning('Can not find field "model_configs", '
f'skipping {model_name_origin}...')
continue
if args.models is not None and model_name_new not in args.models:
logger.info(
f'Test specific model mode, skip {model_name_origin}...')
continue
model_metafile_info, checkpoint_save_dir, codebase_dir = \
get_model_metafile_info(global_info, models, logger)
for model_config in model_metafile_info:
logger.info(f'Processing test for {model_config}...')
# Get backends info
pipelines_info = models.get('pipelines', None)
if pipelines_info is None:
logger.warning('pipelines_info is None, skip it...')
continue
# Get model config path
model_cfg_path = Path(codebase_dir).joinpath(model_config)
assert model_cfg_path.exists()
# Get checkpoint path
checkpoint_name = Path(
model_metafile_info.get(model_config).get('Weights')).name
checkpoint_path = Path(checkpoint_save_dir, checkpoint_name)
assert checkpoint_path.exists()
# Get pytorch from metafile.yml
pytorch_metric, metafile_dataset = get_pytorch_result(
model_name_origin, model_metafile_info, checkpoint_path,
model_cfg_path, model_config, metric_info, report_dict,
logger, report_txt_path, global_info.get('codebase_name'))
for pipeline in pipelines_info:
deploy_config = pipeline.get('deploy_config')
backend_name = get_backend(deploy_config).name.lower()
if backend_name not in backend_list:
logger.warning(f'backend_name ({backend_name}) not '
f'in {backend_list}, skip it...')
continue
backend_file_name = \
backend_file_info.get(backend_name, None)
if backend_file_name is None:
logger.warning('backend_file_name is None, '
'skip it...')
continue
get_backend_result(pipeline, model_cfg_path,
checkpoint_path, work_dir, args.device,
pytorch_metric, metric_info,
report_dict, test_type, logger,
backend_file_name, report_txt_path,
metafile_dataset, model_name_origin)
if len(report_dict.get('Model')) > 0:
save_report(report_dict, report_save_path, logger)
else:
logger.info(f'No model for {deploy_yaml}, not saving report.')
# merge report
merge_report(str(work_dir), logger)
logger.info('All done.')
if __name__ == '__main__':
main()