mmdeploy/tests/test_mmedit/test_mmedit_apis.py

220 lines
7.4 KiB
Python

import importlib
import os
import tempfile
import mmcv
import numpy as np
import pytest
import torch
import mmdeploy.apis.onnxruntime as ort_apis
import mmdeploy.apis.ppl as ppl_apis
import mmdeploy.apis.tensorrt as trt_apis
import mmdeploy.apis.test as api_test
import mmdeploy.apis.utils as api_utils
from mmdeploy.utils.constants import Backend, Codebase
from mmdeploy.utils.test import SwitchBackendWrapper
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
@pytest.mark.skipif(
not importlib.util.find_spec('tensorrt'), reason='requires tensorrt')
def test_TensorRTRestorer():
# force add backend wrapper regardless of plugins
from mmdeploy.apis.tensorrt.tensorrt_utils import TRTWrapper
trt_apis.__dict__.update({'TRTWrapper': TRTWrapper})
# simplify backend inference
outputs = {
'output': torch.rand(1, 3, 64, 64).cuda(),
}
with SwitchBackendWrapper(TRTWrapper) as wrapper:
wrapper.set(outputs=outputs)
from mmdeploy.mmedit.apis.inference import TensorRTRestorer
trt_restorer = TensorRTRestorer('', 0)
imgs = torch.rand(1, 3, 64, 64).cuda()
results = trt_restorer.forward(imgs)
assert results is not None, ('failed to get output using '
'TensorRTRestorer')
results = trt_restorer.forward(imgs, test_mode=True)
assert results is not None, ('failed to get output using '
'TensorRTRestorer')
@pytest.mark.skipif(
not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime')
def test_ONNXRuntimeRestorer():
# force add backend wrapper regardless of plugins
from mmdeploy.apis.onnxruntime.onnxruntime_utils import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
# simplify backend inference
outputs = torch.rand(1, 3, 64, 64)
with SwitchBackendWrapper(ORTWrapper) as wrapper:
wrapper.set(outputs=outputs)
from mmdeploy.mmedit.apis.inference import ONNXRuntimeRestorer
ort_restorer = ONNXRuntimeRestorer('', 0)
imgs = torch.rand(1, 3, 64, 64)
results = ort_restorer.forward(imgs)
assert results is not None, 'failed to get output using '\
'ONNXRuntimeRestorer'
results = ort_restorer.forward(imgs, test_mode=True)
assert results is not None, 'failed to get output using '\
'ONNXRuntimeRestorer'
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
@pytest.mark.skipif(
not importlib.util.find_spec('pyppl'), reason='requires pyppl')
def test_PPLRestorer():
# force add backend wrapper regardless of plugins
from mmdeploy.apis.ppl.ppl_utils import PPLWrapper
ppl_apis.__dict__.update({'PPLWrapper': PPLWrapper})
# simplify backend inference
outputs = torch.rand(1, 3, 64, 64)
with SwitchBackendWrapper(PPLWrapper) as wrapper:
wrapper.set(outputs=outputs)
from mmdeploy.mmedit.apis.inference import PPLRestorer
ppl_restorer = PPLRestorer('', 0)
imgs = torch.rand(1, 3, 64, 64)
results = ppl_restorer.forward(imgs)
assert results is not None, 'failed to get output using PPLRestorer'
results = ppl_restorer.forward(imgs, test_mode=True)
assert results is not None, 'failed to get output using PPLRestorer'
model_cfg = 'tests/test_mmedit/data/model.py'
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmedit', task='SuperResolution'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['output'])))
input_img = torch.rand(1, 3, 64, 64)
input = {'lq': input_img}
def test_init_pytorch_model():
model = api_utils.init_pytorch_model(
Codebase.MMEDIT, model_cfg=model_cfg, device='cpu')
assert model is not None
def create_backend_model():
if not importlib.util.find_spec('onnxruntime'):
pytest.skip('requires onnxruntime')
from mmdeploy.apis.onnxruntime.onnxruntime_utils import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
# simplify backend inference
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(model_cfg=model_cfg, deploy_cfg=deploy_cfg)
model = api_utils.init_backend_model([''], model_cfg, deploy_cfg)
return model, wrapper
@pytest.mark.skipif(
not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime')
def test_init_backend_model():
model, wrapper = create_backend_model()
assert model is not None
# Recovery
wrapper.recover()
@pytest.mark.skipif(
not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime')
def test_run_inference():
model, wrapper = create_backend_model()
result = api_utils.run_inference(Codebase.MMEDIT, input, model)
assert isinstance(result, np.ndarray)
# Recovery
wrapper.recover()
@pytest.mark.skipif(
not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime')
def test_visualize():
model, wrapper = create_backend_model()
result = api_utils.run_inference(Codebase.MMEDIT, input, model)
with tempfile.TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
api_utils.visualize(Codebase.MMEDIT, input, result, model, filename,
Backend.ONNXRUNTIME)
assert os.path.exists(filename)
# Recovery
wrapper.recover()
@pytest.mark.skipif(
not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime')
def test_inference_model():
numpy_img = np.random.rand(64, 64, 3)
with tempfile.TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
model, wrapper = create_backend_model()
from mmdeploy.apis.inference import inference_model
inference_model(model_cfg, deploy_cfg, model, numpy_img, 'cpu',
Backend.ONNXRUNTIME, filename, False)
assert os.path.exists(filename)
# Recovery
wrapper.recover()
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
def test_test():
from mmcv.parallel import MMDataParallel
with tempfile.TemporaryDirectory() as dir:
# Export a complete model
numpy_img = np.random.rand(50, 50, 3)
onnx_filename = 'end2end.onnx'
onnx_path = os.path.join(dir, onnx_filename)
from mmdeploy.apis import torch2onnx
torch2onnx(numpy_img, dir, onnx_filename, deploy_cfg, model_cfg)
assert os.path.exists(onnx_path)
# Prepare dataloader
dataset = api_utils.build_dataset(
Codebase.MMEDIT, model_cfg, dataset_type='test')
assert dataset is not None, 'Failed to build dataset'
dataloader = api_utils.build_dataloader(Codebase.MMEDIT, dataset, 1, 1)
assert dataloader is not None, 'Failed to build dataloader'
# Prepare model
model = api_utils.init_backend_model([onnx_path], model_cfg,
deploy_cfg)
model = MMDataParallel(model, device_ids=[0])
assert model is not None
# Run test
outputs = api_test.single_gpu_test(Codebase.MMEDIT, model, dataloader)
assert outputs is not None
api_test.post_process_outputs(outputs, dataset, model_cfg,
Codebase.MMEDIT)