mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* add ncnn test exporter in test_ops.py * add ncnn test exporter in utils.py * add onnxruntime and tensorrt ops test * fix blank line * fix comment add nms ops test * remove nms test * add test sample add dockerstring * remove nms test * fix grid_sample add type hind * fix problem * fix dockerstring * add nms batch_nms multi_level_roi_align * add test data * fix problem * rm pkl file dependent * rm file * add docstring * remove multi_level_dependce * add mmseg module unittest * add mmseg test * add mmseg model unit test * fix blankline * rename file * add syncbn2bn unit test * add apis/export * lint * lint * ?? * delete# * fix ncnn check * fix problems * fix problems * fix dim problems * resolve comments * Fix SwitchBackendWrapper * fix assert problems * fix assert * Remove comment * merge master Co-authored-by: SingleZombie <singlezombie@163.com>
98 lines
3.2 KiB
Python
98 lines
3.2 KiB
Python
import mmcv
|
|
import numpy as np
|
|
|
|
from mmdeploy.apis.utils import build_dataloader, build_dataset, create_input
|
|
from mmdeploy.utils.constants import Codebase, Task
|
|
|
|
|
|
class TestCreateInput:
|
|
task = Task.SUPER_RESOLUTION
|
|
img_test_pipeline = [
|
|
dict(
|
|
type='LoadImageFromFile',
|
|
io_backend='disk',
|
|
key='lq',
|
|
flag='unchanged'),
|
|
dict(
|
|
type='LoadImageFromFile',
|
|
io_backend='disk',
|
|
key='gt',
|
|
flag='unchanged'),
|
|
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
|
|
dict(
|
|
type='Normalize',
|
|
keys=['lq', 'gt'],
|
|
mean=[0, 0, 0],
|
|
std=[1, 1, 1],
|
|
to_rgb=True),
|
|
dict(
|
|
type='Collect',
|
|
keys=['lq', 'gt'],
|
|
meta_keys=['lq_path', 'lq_path']),
|
|
dict(type='ImageToTensor', keys=['lq', 'gt'])
|
|
]
|
|
|
|
imgs = np.random.rand(32, 32, 3)
|
|
img_path = 'tests/test_mmedit/data/imgs/blank.jpg'
|
|
|
|
def test_create_input_static(self):
|
|
data = dict(test=dict(pipeline=TestCreateInput.img_test_pipeline))
|
|
model_cfg = mmcv.Config(
|
|
dict(data=data, test_pipeline=TestCreateInput.img_test_pipeline))
|
|
inputs = create_input(
|
|
Codebase.MMEDIT,
|
|
TestCreateInput.task,
|
|
model_cfg,
|
|
TestCreateInput.imgs,
|
|
input_shape=(32, 32),
|
|
device='cpu')
|
|
assert inputs is not None, 'Failed to create input'
|
|
|
|
def test_create_input_dynamic(self):
|
|
data = dict(test=dict(pipeline=TestCreateInput.img_test_pipeline))
|
|
model_cfg = mmcv.Config(
|
|
dict(data=data, test_pipeline=TestCreateInput.img_test_pipeline))
|
|
inputs = create_input(
|
|
Codebase.MMEDIT,
|
|
TestCreateInput.task,
|
|
model_cfg,
|
|
TestCreateInput.imgs,
|
|
input_shape=None,
|
|
device='cpu')
|
|
assert inputs is not None, 'Failed to create input'
|
|
|
|
def test_create_input_from_file(self):
|
|
data = dict(test=dict(pipeline=TestCreateInput.img_test_pipeline))
|
|
model_cfg = mmcv.Config(
|
|
dict(data=data, test_pipeline=TestCreateInput.img_test_pipeline))
|
|
inputs = create_input(
|
|
Codebase.MMEDIT,
|
|
TestCreateInput.task,
|
|
model_cfg,
|
|
TestCreateInput.img_path,
|
|
input_shape=None,
|
|
device='cpu')
|
|
assert inputs is not None, 'Failed to create input'
|
|
|
|
|
|
def test_build_dataset():
|
|
data = dict(
|
|
test={
|
|
'type': 'SRFolderDataset',
|
|
'lq_folder': 'tests/test_mmedit/data/imgs',
|
|
'gt_folder': 'tests/test_mmedit/data/imgs',
|
|
'scale': 1,
|
|
'filename_tmpl': '{}',
|
|
'pipeline': [
|
|
{
|
|
'type': 'LoadImageFromFile'
|
|
},
|
|
]
|
|
})
|
|
dataset_cfg = mmcv.Config(dict(data=data))
|
|
dataset = build_dataset(
|
|
Codebase.MMEDIT, dataset_cfg=dataset_cfg, dataset_type='test')
|
|
assert dataset is not None, 'Failed to build dataset'
|
|
dataloader = build_dataloader(Codebase.MMEDIT, dataset, 1, 1)
|
|
assert dataloader is not None, 'Failed to build dataloader'
|