mmdeploy/tests/test_codebase/test_mmrotate/test_rotated_detection.py
tpoisonooo 331292a992
Feature: support mmdet3d dev-1.x 1.1.0rc1 (#1225)
* feat(mmdet3d): test pointpillars and centerpoint on ort, openvino and trt passed

* fix(centerpoint): mvx_two_stage input error

* fix(review): remove mode decorator

* fix(mmdet3d): review advices

* fix(regression): update mmdet3d.yml and test ort/openvino passed

* unittest(mmdet3d): fix

* fix(unittest): fix

* fix(mmdet3d): unittest

* fix(mmdet3d): unittest

* fix(CI): remove mmcv.Config

* fix(mmdet3d): unittest

* fix(mmdet3d): support torch1.12

* fix(CI): use bigger point cloud file

* improvement(mmdet3d): align backend outputs with torch

* fix(mmdet3d): remove useless

* style(mmdet3d): format code

* style(mmdet3d): remove useless

* fix(mmdet3d): sync vis_task

* unittest(mmdet3d): add test

* docs(mmdet3d): add docstring

* unittest(ci): add unittest data

* fix(mmdet3d): review advices

* feat(mmdet3d): convert fail

* style(mmdet3d): docstring

* style(mmdet3d): docstring
2022-11-04 20:54:01 +08:00

153 lines
4.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory
import mmengine
import numpy as np
import pytest
import torch
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
import mmdeploy.backend.onnxruntime as ort_apis
from mmdeploy.apis import build_task_processor
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Codebase, load_config
from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper
try:
import_codebase(Codebase.MMROTATE)
except ImportError:
pytest.skip(
f'{Codebase.MMROTATE} is not installed.', allow_module_level=True)
model_cfg_path = 'tests/test_codebase/test_mmrotate/data/model.py'
model_cfg = load_config(model_cfg_path)[0]
deploy_cfg = mmengine.Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(
type='mmrotate',
task='RotatedDetection',
post_processing=dict(
score_threshold=0.05,
iou_threshold=0.1,
pre_top_k=2000,
keep_top_k=2000)),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['dets', 'labels'])))
onnx_file = NamedTemporaryFile(suffix='.onnx').name
task_processor = None
img_shape = (32, 32)
img = np.random.rand(*img_shape, 3)
@pytest.fixture(autouse=True)
def init_task_processor():
global task_processor
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
def test_build_pytorch_model():
from mmrotate.models import RotatedBaseDetector
model = task_processor.build_pytorch_model(None)
assert isinstance(model, RotatedBaseDetector)
@pytest.fixture
def backend_model():
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(outputs={
'dets': torch.rand(1, 10, 6),
'labels': torch.rand(1, 10)
})
yield task_processor.build_backend_model([''])
wrapper.recover()
def test_build_backend_model(backend_model):
from mmdeploy.codebase.mmrotate.deploy.rotated_detection_model import \
End2EndModel
assert isinstance(backend_model, End2EndModel)
@pytest.mark.parametrize('device', ['cpu'])
def test_create_input(device):
original_device = task_processor.device
task_processor.device = device
inputs = task_processor.create_input(img, input_shape=img_shape)
assert len(inputs) == 2
task_processor.device = original_device
def test_run_inference(backend_model):
torch_model = task_processor.build_pytorch_model(None)
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
torch_results = task_processor.run_inference(torch_model, input_dict)
backend_results = task_processor.run_inference(backend_model, input_dict)
assert torch_results is not None
assert backend_results is not None
assert len(torch_results[0]) == len(backend_results[0])
def test_visualize(backend_model):
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
results = task_processor.run_inference(backend_model, input_dict)
with TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
task_processor.visualize(backend_model, img, results[0], filename, '')
assert os.path.exists(filename)
def test_get_partition_cfg():
with pytest.raises(NotImplementedError):
_ = task_processor.get_partition_cfg(partition_type='')
def test_build_dataset_and_dataloader():
dataset = task_processor.build_dataset(
dataset_cfg=model_cfg, dataset_type='test')
assert isinstance(dataset, Dataset), 'Failed to build dataset'
dataloader = task_processor.build_dataloader(dataset, 1, 1)
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
def test_single_gpu_test_and_evaluate():
class DummyDataset(Dataset):
def __getitem__(self, index):
return 0
def __len__(self):
return 0
def evaluate(self, *args, **kwargs):
return 0
def format_results(self, *args, **kwargs):
return 0
dataset = DummyDataset()
# Prepare dataloader
dataloader = DataLoader(dataset)
# Prepare dummy model
model = DummyModel(outputs=[torch.rand([1, 10, 6]), torch.rand([1, 10])])
# Run test
outputs = task_processor.single_gpu_test(model, dataloader)
assert isinstance(outputs, list)
output_file = NamedTemporaryFile(suffix='.pkl').name
task_processor.evaluate_outputs(
model_cfg, outputs, dataset, 'bbox', out=output_file, format_only=True)