55 lines
1.7 KiB
Java
55 lines
1.7 KiB
Java
import mmdeploy.Classifier;
|
|
import mmdeploy.PixelFormat;
|
|
import mmdeploy.DataType;
|
|
import mmdeploy.Mat;
|
|
|
|
import javax.imageio.ImageIO;
|
|
import java.awt.image.BufferedImage;
|
|
import java.awt.image.DataBufferByte;
|
|
import java.io.File;
|
|
import java.io.IOException;
|
|
|
|
/** @description: this is a class for ImageClassification java demo. */
|
|
public class ImageClassification {
|
|
|
|
/** The main function for ImageClassification Java demo.
|
|
* @param deviceName: the device name of the demo.
|
|
* @param modelPath: the image classification model path.
|
|
* @param imagePath: the image path.
|
|
*/
|
|
public static void main(String[] args) {
|
|
// Parse arguments
|
|
if (args.length != 3) {
|
|
System.out.println("usage:\njava ImageClassification deviceName modelPath imagePath");
|
|
return;
|
|
}
|
|
String deviceName = args[0];
|
|
String modelPath = args[1];
|
|
String imagePath = args[2];
|
|
|
|
// create classifier
|
|
Classifier classifier = null;
|
|
|
|
try {
|
|
classifier = new Classifier(modelPath, deviceName, 0);
|
|
// load image
|
|
Mat img = Utils.loadImage(imagePath);
|
|
|
|
// apply classifier
|
|
Classifier.Result[] result = classifier.apply(img);
|
|
|
|
// print results
|
|
for (Classifier.Result value : result) {
|
|
System.out.printf("label: %d, score: %.4f\n", value.label_id, value.score);
|
|
}
|
|
} catch (Exception e) {
|
|
System.out.println("exception: " + e.getMessage());
|
|
} finally {
|
|
// release classifier
|
|
if (classifier != null) {
|
|
classifier.release();
|
|
}
|
|
}
|
|
}
|
|
}
|