mmdeploy/tests/test_mmocr/test_mmocr_models.py

410 lines
13 KiB
Python

import mmcv
import numpy as np
import pytest
import torch
from mmocr.models.textdet.necks import FPNC
from mmdeploy.utils.test import (WrapModel, get_model_outputs,
get_rewrite_outputs)
class FPNCNeckModel(FPNC):
def __init__(self, in_channels, init_cfg=None):
super().__init__(in_channels, init_cfg=init_cfg)
self.in_channels = in_channels
self.neck = FPNC(in_channels, init_cfg=init_cfg)
def forward(self, inputs):
neck_inputs = [
torch.ones(1, channel, inputs.shape[-2], inputs.shape[-1])
for channel in self.in_channels
]
output = self.neck.forward(neck_inputs)
return output
def get_bidirectionallstm_model():
from mmocr.models.textrecog.layers.lstm_layer import BidirectionalLSTM
model = BidirectionalLSTM(32, 16, 16)
model.requires_grad_(False)
return model
def get_single_stage_text_detector_model():
from mmocr.models.textdet import SingleStageTextDetector
backbone = dict(
type='mmdet.ResNet',
depth=18,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
norm_cfg=dict(type='BN', requires_grad=True),
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
norm_eval=False,
style='caffe')
neck = dict(
type='FPNC',
in_channels=[64, 128, 256, 512],
lateral_channels=4,
out_channels=4)
bbox_head = dict(
type='DBHead',
text_repr_type='quad',
in_channels=16,
loss=dict(type='DBLoss', alpha=5.0, beta=10.0, bbce_loss=True))
model = SingleStageTextDetector(backbone, neck, bbox_head)
model.requires_grad_(False)
return model
def get_encode_decode_recognizer_model():
from mmocr.models.textrecog import EncodeDecodeRecognizer
cfg = dict(
preprocessor=None,
backbone=dict(type='VeryDeepVgg', leaky_relu=False, input_channels=1),
encoder=dict(type='TFEncoder'),
decoder=dict(type='CRNNDecoder', in_channels=512, rnn_flag=True),
loss=dict(type='CTCLoss'),
label_convertor=dict(
type='CTCConvertor',
dict_type='DICT36',
with_unknown=False,
lower=True),
pretrained=None)
model = EncodeDecodeRecognizer(
backbone=cfg['backbone'],
encoder=cfg['encoder'],
decoder=cfg['decoder'],
loss=cfg['loss'],
label_convertor=cfg['label_convertor'])
model.requires_grad_(False)
return model
def get_crnn_decoder_model(rnn_flag):
from mmocr.models.textrecog.decoders import CRNNDecoder
model = CRNNDecoder(32, 4, rnn_flag=rnn_flag)
model.requires_grad_(False)
return model
def get_fpnc_neck_model():
model = FPNCNeckModel([2, 4, 8, 16])
model.requires_grad_(False)
return model
def get_base_recognizer_model():
from mmocr.models.textrecog import CRNNNet
cfg = dict(
preprocessor=None,
backbone=dict(type='VeryDeepVgg', leaky_relu=False, input_channels=1),
encoder=None,
decoder=dict(type='CRNNDecoder', in_channels=512, rnn_flag=True),
loss=dict(type='CTCLoss'),
label_convertor=dict(
type='CTCConvertor',
dict_type='DICT36',
with_unknown=False,
lower=True),
pretrained=None)
model = CRNNNet(
backbone=cfg['backbone'],
decoder=cfg['decoder'],
loss=cfg['loss'],
label_convertor=cfg['label_convertor'])
model.requires_grad_(False)
return model
@pytest.mark.parametrize('backend_type', ['ncnn'])
def test_bidirectionallstm(backend_type):
"""Test forward rewrite of bidirectionallstm."""
pytest.importorskip(backend_type, reason=f'requires {backend_type}')
bilstm = get_bidirectionallstm_model()
bilstm.cpu().eval()
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type),
onnx_config=dict(input_shape=None),
codebase_config=dict(
type='mmocr',
task='TextRecognition',
)))
input = torch.rand(1, 1, 32)
# to get outputs of pytorch model
model_inputs = {
'input': input,
}
model_outputs = get_model_outputs(bilstm, 'forward', model_inputs)
# to get outputs of onnx model after rewrite
wrapped_model = WrapModel(bilstm, 'forward')
rewrite_inputs = {'input': input}
rewrite_outputs = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
model_output = model_output.squeeze().cpu().numpy()
rewrite_output = rewrite_output.squeeze()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
def test_simple_test_of_single_stage_text_detector():
"""Test simple_test single_stage_text_detector."""
single_stage_text_detector = get_single_stage_text_detector_model()
single_stage_text_detector.eval()
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type='default'),
onnx_config=dict(input_shape=None),
codebase_config=dict(
type='mmocr',
task='TextDetection',
)))
input = torch.rand(1, 3, 64, 64)
img_metas = [{
'ori_shape': [64, 64, 3],
'img_shape': [64, 64, 3],
'pad_shape': [64, 64, 3],
'scale_factor': [1., 1., 1., 1],
}]
x = single_stage_text_detector.extract_feat(input)
model_outputs = single_stage_text_detector.bbox_head(x)
wrapped_model = WrapModel(single_stage_text_detector, 'simple_test')
rewrite_inputs = {'img': input, 'img_metas': img_metas[0]}
rewrite_outputs = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
model_output = model_output.squeeze().cpu().numpy()
rewrite_output = rewrite_output.squeeze()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
@pytest.mark.parametrize('backend_type', ['ncnn'])
@pytest.mark.parametrize('rnn_flag', [True, False])
def test_crnndecoder(backend_type, rnn_flag):
"""Test forward rewrite of crnndecoder."""
pytest.importorskip(backend_type, reason=f'requires {backend_type}')
crnn_decoder = get_crnn_decoder_model(rnn_flag)
crnn_decoder.cpu().eval()
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type),
onnx_config=dict(input_shape=None),
codebase_config=dict(
type='mmocr',
task='TextRecognition',
)))
input = torch.rand(1, 32, 1, 64)
out_enc = None
targets_dict = None
img_metas = None
# to get outputs of pytorch model
model_inputs = {
'feat': input,
'out_enc': out_enc,
'targets_dict': targets_dict,
'img_metas': img_metas
}
model_outputs = get_model_outputs(crnn_decoder, 'forward_train',
model_inputs)
# to get outputs of onnx model after rewrite
wrapped_model = WrapModel(
crnn_decoder,
'forward_train',
out_enc=out_enc,
targets_dict=targets_dict,
img_metas=img_metas)
rewrite_inputs = {'feat': input}
rewrite_outputs = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
model_output = model_output.squeeze().cpu().numpy()
rewrite_output = rewrite_output.squeeze()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
@pytest.mark.parametrize(
'img_metas', [[None], [{
'resize_shape': [32, 32],
'valid_ratio': 1.0
}]])
@pytest.mark.parametrize('is_dynamic', [True, False])
def test_forward_of_base_recognizer(img_metas, is_dynamic):
"""Test forward base_recognizer."""
base_recognizer = get_base_recognizer_model()
base_recognizer.eval()
if not is_dynamic:
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type='ncnn'),
onnx_config=dict(input_shape=None),
codebase_config=dict(
type='mmocr',
task='TextRecognition',
)))
else:
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type='ncnn'),
onnx_config=dict(
input_shape=None,
dynamic_axes={
'input': {
0: 'batch',
2: 'height',
3: 'width'
},
'output': {
0: 'batch',
2: 'height',
3: 'width'
}
}),
codebase_config=dict(
type='mmocr',
task='TextRecognition',
)))
input = torch.rand(1, 1, 32, 32)
feat = base_recognizer.extract_feat(input)
out_enc = None
if base_recognizer.encoder is not None:
out_enc = base_recognizer.encoder(feat, img_metas)
model_outputs = base_recognizer.decoder(
feat, out_enc, None, img_metas, train_mode=False)
wrapped_model = WrapModel(
base_recognizer, 'forward', img_metas=img_metas[0])
rewrite_inputs = {
'img': input,
}
rewrite_outputs = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
model_output = model_output.squeeze().cpu().numpy()
rewrite_output = rewrite_output.squeeze()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
def test_simple_test_of_encode_decode_recognizer():
"""Test simple_test encode_decode_recognizer."""
encode_decode_recognizer = get_encode_decode_recognizer_model()
encode_decode_recognizer.eval()
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type='default'),
onnx_config=dict(input_shape=None),
codebase_config=dict(
type='mmocr',
task='TextRecognition',
)))
input = torch.rand(1, 1, 32, 32)
img_metas = [{'resize_shape': [32, 32], 'valid_ratio': 1.0}]
feat = encode_decode_recognizer.extract_feat(input)
out_enc = None
if encode_decode_recognizer.encoder is not None:
out_enc = encode_decode_recognizer.encoder(feat, img_metas)
model_outputs = encode_decode_recognizer.decoder(
feat, out_enc, None, img_metas, train_mode=False)
wrapped_model = WrapModel(
encode_decode_recognizer, 'simple_test', img_metas=img_metas)
rewrite_inputs = {'img': input}
rewrite_outputs = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
model_output = model_output.squeeze().cpu().numpy()
rewrite_output = rewrite_output.squeeze()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
@pytest.mark.parametrize('backend_type', ['tensorrt'])
def test_forward_of_fpnc(backend_type):
"""Test forward rewrite of fpnc."""
fpnc = get_fpnc_neck_model()
fpnc.eval()
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(
type=backend_type,
common_config=dict(max_workspace_size=1 << 30),
model_inputs=[
dict(
input_shapes=dict(
input=dict(
min_shape=[1, 3, 64, 64],
opt_shape=[1, 3, 64, 64],
max_shape=[1, 3, 64, 64])))
]),
onnx_config=dict(input_shape=[64, 64], output_names=['output']),
codebase_config=dict(type='mmocr', task='TextDetection')))
input = torch.rand(1, 3, 64, 64).cuda()
model_inputs = {
'inputs': input,
}
model_outputs = get_model_outputs(fpnc, 'forward', model_inputs)
wrapped_model = WrapModel(fpnc, 'forward')
rewrite_inputs = {
'inputs': input,
}
rewrite_outputs, is_need_name = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
if is_need_name:
model_output = model_outputs[0].squeeze().cpu().numpy()
rewrite_output = rewrite_outputs['output'].squeeze().cpu().numpy()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
else:
for model_output, rewrite_output in zip(model_outputs,
rewrite_outputs):
model_output = model_output.squeeze().cpu().numpy()
rewrite_output = rewrite_output.squeeze().cpu().numpy()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)