mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
137 lines
4.1 KiB
C++
137 lines
4.1 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include "segmentor.h"
|
|
|
|
#include "codebase/mmseg/mmseg.h"
|
|
#include "core/device.h"
|
|
#include "core/graph.h"
|
|
#include "core/mat.h"
|
|
#include "core/tensor.h"
|
|
#include "core/utils/formatter.h"
|
|
#include "handle.h"
|
|
|
|
using namespace std;
|
|
using namespace mmdeploy;
|
|
|
|
namespace {
|
|
|
|
Value& config_template() {
|
|
// clang-format off
|
|
static Value v{
|
|
{
|
|
"pipeline", {
|
|
{"input", {"img"}},
|
|
{"output", {"mmsegmentation-fcn_output"}},
|
|
{
|
|
"tasks", {
|
|
{
|
|
{"name", "mmsegmentation-fcn"},
|
|
{"type", "Inference"},
|
|
{"params", {{"model", "TBD"}}},
|
|
{"input", {"img"}},
|
|
{"output", {"mmsegmentation-fcn_output"}}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
// clang-format on
|
|
return v;
|
|
}
|
|
|
|
template <class ModelType>
|
|
int mmdeploy_segmentor_create_impl(ModelType&& m, const char* device_name, int device_id,
|
|
mm_handle_t* handle) {
|
|
try {
|
|
auto value = config_template();
|
|
value["pipeline"]["tasks"][0]["params"]["model"] = std::forward<ModelType>(m);
|
|
|
|
auto segmentor = std::make_unique<Handle>(device_name, device_id, std::move(value));
|
|
|
|
*handle = segmentor.release();
|
|
return MM_SUCCESS;
|
|
|
|
} catch (const std::exception& e) {
|
|
ERROR("exception caught: {}", e.what());
|
|
} catch (...) {
|
|
ERROR("unknown exception caught");
|
|
}
|
|
return MM_E_FAIL;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
MM_SDK_API int mmdeploy_segmentor_create(mm_model_t model, const char* device_name, int device_id,
|
|
mm_handle_t* handle) {
|
|
return mmdeploy_segmentor_create_impl(*static_cast<Model*>(model), device_name, device_id,
|
|
handle);
|
|
}
|
|
|
|
MM_SDK_API int mmdeploy_segmentor_create_by_path(const char* model_path, const char* device_name,
|
|
int device_id, mm_handle_t* handle) {
|
|
return mmdeploy_segmentor_create_impl(model_path, device_name, device_id, handle);
|
|
}
|
|
|
|
MM_SDK_API int mmdeploy_segmentor_apply(mm_handle_t handle, const mm_mat_t* mats, int mat_count,
|
|
mm_segment_t** results) {
|
|
if (handle == nullptr || mats == nullptr || mat_count == 0 || results == nullptr) {
|
|
return MM_E_INVALID_ARG;
|
|
}
|
|
|
|
try {
|
|
auto segmentor = static_cast<Handle*>(handle);
|
|
|
|
Value input{Value::kArray};
|
|
for (int i = 0; i < mat_count; ++i) {
|
|
mmdeploy::Mat _mat{mats[i].height, mats[i].width, PixelFormat(mats[i].format),
|
|
DataType(mats->type), mats[i].data, Device{"cpu"}};
|
|
input.front().push_back({{"ori_img", _mat}});
|
|
}
|
|
|
|
auto output = segmentor->Run(std::move(input)).value().front();
|
|
|
|
auto deleter = [&](mm_segment_t* p) { mmdeploy_segmentor_release_result(p, mat_count); };
|
|
unique_ptr<mm_segment_t[], decltype(deleter)> _results(new mm_segment_t[mat_count]{}, deleter);
|
|
|
|
auto results_ptr = _results.get();
|
|
for (auto i = 0; i < mat_count; ++i, ++results_ptr) {
|
|
auto& output_item = output[i];
|
|
DEBUG("the {}-th item in output: {}", i, output_item);
|
|
auto segmentor_output = from_value<mmseg::SegmentorOutput>(output_item);
|
|
results_ptr->height = segmentor_output.height;
|
|
results_ptr->width = segmentor_output.width;
|
|
results_ptr->classes = segmentor_output.classes;
|
|
results_ptr->mask = new int[results_ptr->height * results_ptr->width];
|
|
segmentor_output.mask.CopyTo(results_ptr->mask, segmentor->stream()).value();
|
|
}
|
|
segmentor->stream().Wait().value();
|
|
*results = _results.release();
|
|
return MM_SUCCESS;
|
|
|
|
} catch (const std::exception& e) {
|
|
ERROR("exception caught: {}", e.what());
|
|
} catch (...) {
|
|
ERROR("unknown exception caught");
|
|
}
|
|
return MM_E_FAIL;
|
|
}
|
|
|
|
MM_SDK_API void mmdeploy_segmentor_release_result(mm_segment_t* results, int count) {
|
|
if (results == nullptr) {
|
|
return;
|
|
}
|
|
|
|
for (auto i = 0; i < count; ++i) {
|
|
delete[] results[i].mask;
|
|
}
|
|
delete[] results;
|
|
}
|
|
|
|
MM_SDK_API void mmdeploy_segmentor_destroy(mm_handle_t handle) {
|
|
if (handle != nullptr) {
|
|
auto segmentor = static_cast<Handle*>(handle);
|
|
delete segmentor;
|
|
}
|
|
}
|