mmdeploy/csrc/core/operator.cpp
lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

82 lines
2.0 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "operator.h"
namespace mmdeploy::graph {
Result<Value> DistribOA(const Value& oa) {
if (!oa.is_object()) {
return Status(eInvalidArgument);
}
Value ao = ValueType::kArray;
for (auto inner = oa.begin(); inner != oa.end(); ++inner) {
if (!inner->is_array()) {
return Status(eInvalidArgument);
}
if (ao.empty()) {
for (int i = 0; i < inner->size(); ++i) ao.push_back(ValueType::kObject);
}
if (inner->size() != oa.size()) {
return Status(eInvalidArgument);
}
for (int i = 0; i < inner->size(); ++i) {
ao[i][inner.key()] = (*inner)[i];
}
}
return ao;
}
Result<Value> DistribAO(const Value& ao) {
if (!ao.is_array()) {
return Status(eInvalidArgument);
}
Value oa = ValueType::kObject;
for (const auto& inner : ao) {
if (inner.is_object()) {
return Status(eInvalidArgument);
}
if (oa.empty()) {
for (auto item = inner.begin(); item != inner.end(); ++item) {
oa[item.key()] = ValueType::kObject;
}
}
if (inner.size() != oa.size()) {
return Status(eInvalidArgument);
}
for (auto item = inner.begin(); item != inner.end(); ++item) {
if (!oa.contains(item.key())) {
return Status(eInvalidArgument);
}
oa[item.key()].push_back(*item);
}
}
return oa;
}
Result<Value> DistribAA(const Value& a) {
if (!a.is_array()) {
return Status(eInvalidArgument);
}
auto ta = Value::Array{};
for (const auto& inner : a.get_ref<const Value::Array&>()) {
if (!inner.is_array()) {
return Status(eInvalidArgument);
}
if (ta.empty()) {
ta.reserve(inner.size());
for (int i = 0; i < inner.size(); ++i) {
ta.emplace_back(Value::kArray);
}
}
if (inner.size() != ta.size()) {
return Status(eInvalidArgument);
}
for (int i = 0; i < inner.size(); ++i) {
ta[i].push_back(inner[i]);
}
}
return ta;
}
} // namespace mmdeploy::graph