mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
147 lines
5.8 KiB
C++
147 lines
5.8 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include "core/utils/formatter.h"
|
|
#include "ppl/cv/cuda/resize.h"
|
|
#include "preprocess/transform/resize.h"
|
|
#include "preprocess/transform/transform_utils.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace mmdeploy {
|
|
namespace cuda {
|
|
|
|
class ResizeImpl final : public ::mmdeploy::ResizeImpl {
|
|
public:
|
|
explicit ResizeImpl(const Value& args) : ::mmdeploy::ResizeImpl(args) {}
|
|
~ResizeImpl() override = default;
|
|
|
|
protected:
|
|
Result<Tensor> ResizeImage(const Tensor& tensor, int dst_h, int dst_w) override {
|
|
OUTCOME_TRY(auto src_tensor, MakeAvailableOnDevice(tensor, device_, stream_));
|
|
TensorDesc dst_desc{
|
|
device_, src_tensor.data_type(), {1, dst_h, dst_w, src_tensor.shape(3)}, src_tensor.name()};
|
|
Tensor dst_tensor(dst_desc);
|
|
|
|
auto stream = GetNative<cudaStream_t>(stream_);
|
|
if (arg_.interpolation == "bilinear") {
|
|
OUTCOME_TRY(ResizeLinear(src_tensor, dst_tensor, stream));
|
|
} else if (arg_.interpolation == "nearest") {
|
|
OUTCOME_TRY(ResizeNearest(src_tensor, dst_tensor, stream));
|
|
} else {
|
|
ERROR("{} interpolation is not supported", arg_.interpolation);
|
|
return Status(eNotSupported);
|
|
}
|
|
return dst_tensor;
|
|
}
|
|
|
|
private:
|
|
Result<void> ResizeLinear(const Tensor& src, Tensor& dst, cudaStream_t stream) {
|
|
int h = (int)src.shape(1);
|
|
int w = (int)src.shape(2);
|
|
int c = (int)src.shape(3);
|
|
int dst_h = (int)dst.shape()[1];
|
|
int dst_w = (int)dst.shape()[2];
|
|
ppl::common::RetCode ret = 0;
|
|
|
|
auto data_type = src.data_type();
|
|
if (data_type == DataType::kINT8) {
|
|
auto input = src.data<uint8_t>();
|
|
auto output = dst.data<uint8_t>();
|
|
if (1 == c) {
|
|
ret = ppl::cv::cuda::ResizeLinear<uint8_t, 1>(stream, h, w, w * c, input, dst_h, dst_w,
|
|
dst_w * c, output);
|
|
} else if (3 == c) {
|
|
ret = ppl::cv::cuda::ResizeLinear<uint8_t, 3>(stream, h, w, w * c, input, dst_h, dst_w,
|
|
dst_w * c, output);
|
|
} else if (4 == c) {
|
|
ret = ppl::cv::cuda::ResizeLinear<uint8_t, 4>(stream, h, w, w * c, input, dst_h, dst_w,
|
|
dst_w * c, output);
|
|
} else {
|
|
ERROR("unsupported channels {}", c);
|
|
return Status(eNotSupported);
|
|
}
|
|
} else if (data_type == DataType::kFLOAT) {
|
|
auto input = src.data<float>();
|
|
auto output = dst.data<float>();
|
|
if (1 == c) {
|
|
ret = ppl::cv::cuda::ResizeLinear<float, 1>(stream, h, w, w * c, input, dst_h, dst_w,
|
|
dst_w * c, output);
|
|
} else if (3 == c) {
|
|
ret = ppl::cv::cuda::ResizeLinear<float, 3>(stream, h, w, w * c, input, dst_h, dst_w,
|
|
dst_w * c, output);
|
|
} else if (4 == c) {
|
|
ret = ppl::cv::cuda::ResizeLinear<float, 4>(stream, h, w, w * c, input, dst_h, dst_w,
|
|
dst_w * c, output);
|
|
} else {
|
|
ERROR("unsupported channels {}", c);
|
|
return Status(eNotSupported);
|
|
}
|
|
} else {
|
|
ERROR("unsupported data type {}", src.data_type());
|
|
return Status(eNotSupported);
|
|
}
|
|
return ret == 0 ? success() : Result<void>(Status(eFail));
|
|
}
|
|
|
|
Result<void> ResizeNearest(const Tensor& src, Tensor& dst, cudaStream_t stream) {
|
|
int h = (int)src.shape(1);
|
|
int w = (int)src.shape(2);
|
|
int c = (int)src.shape(3);
|
|
int dst_h = (int)dst.shape(1);
|
|
int dst_w = (int)dst.shape(2);
|
|
ppl::common::RetCode ret = 0;
|
|
|
|
auto data_type = src.data_type();
|
|
if (DataType::kINT8 == data_type) {
|
|
auto input = src.data<uint8_t>();
|
|
auto output = dst.data<uint8_t>();
|
|
if (1 == c) {
|
|
ret = ppl::cv::cuda::ResizeNearestPoint<uint8_t, 1>(stream, h, w, w * c, input, dst_h,
|
|
dst_w, dst_w * c, output);
|
|
} else if (3 == c) {
|
|
ret = ppl::cv::cuda::ResizeNearestPoint<uint8_t, 3>(stream, h, w, w * c, input, dst_h,
|
|
dst_w, dst_w * c, output);
|
|
} else if (4 == c) {
|
|
ret = ppl::cv::cuda::ResizeNearestPoint<uint8_t, 4>(stream, h, w, w * c, input, dst_h,
|
|
dst_w, dst_w * c, output);
|
|
} else {
|
|
ERROR("unsupported channel {}", c);
|
|
return Status(eNotSupported);
|
|
}
|
|
} else if (data_type == DataType::kFLOAT) {
|
|
auto input = src.data<float>();
|
|
auto output = dst.data<float>();
|
|
if (1 == c) {
|
|
ret = ppl::cv::cuda::ResizeNearestPoint<float, 1>(stream, h, w, w * c, input, dst_h, dst_w,
|
|
dst_w * c, output);
|
|
} else if (3 == c) {
|
|
ret = ppl::cv::cuda::ResizeNearestPoint<float, 3>(stream, h, w, w * c, input, dst_h, dst_w,
|
|
dst_w * c, output);
|
|
} else if (4 == c) {
|
|
ret = ppl::cv::cuda::ResizeNearestPoint<float, 4>(stream, h, w, w * c, input, dst_h, dst_w,
|
|
dst_w * c, output);
|
|
} else {
|
|
ERROR("unsupported channel {}", c);
|
|
return Status(eNotSupported);
|
|
}
|
|
} else {
|
|
ERROR("unsupported data type {}", src.data_type());
|
|
return Status(eNotSupported);
|
|
}
|
|
return ret == 0 ? success() : Result<void>(Status(eFail));
|
|
}
|
|
};
|
|
|
|
class ResizeImplCreator : public Creator<::mmdeploy::ResizeImpl> {
|
|
public:
|
|
const char* GetName() const override { return "cuda"; }
|
|
int GetVersion() const override { return 1; }
|
|
ReturnType Create(const Value& args) override { return make_unique<ResizeImpl>(args); }
|
|
};
|
|
} // namespace cuda
|
|
} // namespace mmdeploy
|
|
|
|
using ::mmdeploy::ResizeImpl;
|
|
using ::mmdeploy::cuda::ResizeImplCreator;
|
|
REGISTER_MODULE(ResizeImpl, ResizeImplCreator);
|