mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* [WIP] Refactor v2.0 (#163) * Refactor backend wrapper * Refactor mmdet.inference * Fix * merge * refactor utils * Use deployer and deploy_model to manage pipeline * Resolve comments * Add a real inference api function * rename wrappers * Set execute to private method * Rename deployer deploy_model * Refactor task * remove type hint * lint * Resolve comments * resolve comments * lint * docstring * [Fix]: Fix bugs in details in refactor branch (#192) * [WIP] Refactor v2.0 (#163) * Refactor backend wrapper * Refactor mmdet.inference * Fix * merge * refactor utils * Use deployer and deploy_model to manage pipeline * Resolve comments * Add a real inference api function * rename wrappers * Set execute to private method * Rename deployer deploy_model * Refactor task * remove type hint * lint * Resolve comments * resolve comments * lint * docstring * Fix errors * lint * resolve comments * fix bugs * conflict * lint and typo * Resolve comment * refactor mmseg (#201) * support mmseg * fix docstring * fix docstring * [Refactor]: Get the count of backend files (#202) * Fix backend files * resolve comments * lint * Fix ncnn * [Refactor]: Refactor folders of mmdet (#200) * Move folders * lint * test object detection model * lint * reset changes * fix openvino * resolve comments * __init__.py * Fix path * [Refactor]: move mmseg (#206) * [Refactor]: Refactor mmedit (#205) * feature mmedit * edit2.0 * edit * refactor mmedit * fix __init__.py * fix __init__ * fix formai * fix comment * fix comment * Fix wrong func_name of ConvFCBBoxHead (#209) * [Refactor]: Refactor mmdet unit test (#207) * Move folders * lint * test object detection model * lint * WIP * remove print * finish unit test * Fix tests * resolve comments * Add mask test * lint * resolve comments * Refine cfg file * Move files * add files * Fix path * [Unittest]: Refine the unit tests in mmdet #214 * [Refactor] refactor mmocr to mmdeploy/codebase (#213) * refactor mmocr to mmdeploy/codebase * fix docstring of show_result * fix docstring of visualize * refine docstring * replace print with logging * refince codes * resolve comments * resolve comments * [Refactor]: mmseg tests (#210) * refactor mmseg tests * rename test_codebase * update * add model.py * fix * [Refactor] Refactor mmcls and the package (#217) * refactor mmcls * fix yapf * fix isort * refactor-mmcls-package * fix print to logging * fix docstrings according to others comments * fix comments * fix comments * fix allentdans comment in pr215 * remove mmocr init * [Refactor] Refactor mmedit tests (#212) * feature mmedit * edit2.0 * edit * refactor mmedit * fix __init__.py * fix __init__ * fix formai * fix comment * fix comment * buff * edit test and code refactor * refactor dir * refactor tests/mmedit * fix docstring * add test coverage * fix lint * fix comment * fix comment * Update typehint (#216) * update type hint * update docstring * update * remove file * fix ppl * Refine get_predefined_partition_cfg * fix tensorrt version > 8 * move parse_cuda_device_id to device.py * Fix cascade * onnx2ncnn docstring Co-authored-by: Yifan Zhou <singlezombie@163.com> Co-authored-by: RunningLeon <maningsheng@sensetime.com> Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com> Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com> Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
116 lines
3.6 KiB
Python
116 lines
3.6 KiB
Python
import os
|
|
from tempfile import NamedTemporaryFile, TemporaryDirectory
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
import mmdeploy.backend.onnxruntime as ort_apis
|
|
from mmdeploy.apis import build_task_processor
|
|
from mmdeploy.utils import load_config
|
|
from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper
|
|
|
|
model_cfg_path = 'tests/test_codebase/test_mmseg/data/model.py'
|
|
model_cfg = load_config(model_cfg_path)[0]
|
|
deploy_cfg = mmcv.Config(
|
|
dict(
|
|
backend_config=dict(type='onnxruntime'),
|
|
codebase_config=dict(type='mmseg', task='Segmentation'),
|
|
onnx_config=dict(
|
|
type='onnx',
|
|
export_params=True,
|
|
keep_initializers_as_inputs=False,
|
|
opset_version=11,
|
|
input_shape=None,
|
|
input_names=['input'],
|
|
output_names=['output'])))
|
|
|
|
onnx_file = NamedTemporaryFile(suffix='.onnx').name
|
|
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
|
|
img_shape = (32, 32)
|
|
img = np.random.rand(*img_shape, 3)
|
|
|
|
|
|
def test_init_pytorch_model():
|
|
from mmseg.models.segmentors.base import BaseSegmentor
|
|
model = task_processor.init_pytorch_model(None)
|
|
assert isinstance(model, BaseSegmentor)
|
|
|
|
|
|
@pytest.fixture
|
|
def backend_model():
|
|
from mmdeploy.backend.onnxruntime import ORTWrapper
|
|
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
|
|
wrapper = SwitchBackendWrapper(ORTWrapper)
|
|
wrapper.set(outputs={
|
|
'output': torch.rand(1, 1, *img_shape),
|
|
})
|
|
|
|
yield task_processor.init_backend_model([''])
|
|
|
|
wrapper.recover()
|
|
|
|
|
|
def test_init_backend_model(backend_model):
|
|
assert isinstance(backend_model, torch.nn.Module)
|
|
|
|
|
|
def test_create_input():
|
|
inputs = task_processor.create_input(img, input_shape=img_shape)
|
|
assert isinstance(inputs, tuple) and len(inputs) == 2
|
|
|
|
|
|
def test_run_inference(backend_model):
|
|
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
|
|
results = task_processor.run_inference(backend_model, input_dict)
|
|
assert results is not None
|
|
|
|
|
|
def test_visualize(backend_model):
|
|
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
|
|
results = task_processor.run_inference(backend_model, input_dict)
|
|
with TemporaryDirectory() as dir:
|
|
filename = dir + 'tmp.jpg'
|
|
task_processor.visualize(backend_model, img, results[0], filename, '')
|
|
assert os.path.exists(filename)
|
|
|
|
|
|
def test_get_tensort_from_input():
|
|
input_data = {'img': [torch.ones(3, 4, 5)]}
|
|
inputs = task_processor.get_tensor_from_input(input_data)
|
|
assert torch.equal(inputs, torch.ones(3, 4, 5))
|
|
|
|
|
|
def test_get_partition_cfg():
|
|
try:
|
|
_ = task_processor.get_partition_cfg(partition_type='')
|
|
except NotImplementedError:
|
|
pass
|
|
|
|
|
|
def test_build_dataset_and_dataloader():
|
|
from torch.utils.data import Dataset, DataLoader
|
|
dataset = task_processor.build_dataset(
|
|
dataset_cfg=model_cfg, dataset_type='test')
|
|
assert isinstance(dataset, Dataset), 'Failed to build dataset'
|
|
dataloader = task_processor.build_dataloader(dataset, 1, 1)
|
|
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
|
|
|
|
|
|
def test_single_gpu_test_and_evaluate():
|
|
from mmcv.parallel import MMDataParallel
|
|
|
|
# Prepare dataloader
|
|
dataloader = DataLoader([])
|
|
|
|
# Prepare dummy model
|
|
model = DummyModel(outputs=[torch.rand([1, 1, *img_shape])])
|
|
model = MMDataParallel(model, device_ids=[0])
|
|
assert model is not None
|
|
# Run test
|
|
outputs = task_processor.single_gpu_test(model, dataloader)
|
|
assert outputs is not None
|
|
task_processor.evaluate_outputs(model_cfg, outputs, [])
|