mmdeploy/tests/test_csrc/capi/test_classifier.cpp
lvhan028 3be1779e66
Refactor tests (#283)
* fix sdk model's pipeline.json

* resize INT64 mask

* refactor unit tests

* fix api in model.h

* remove 'customs' from meta info

* fix zip model

* fix clang-format issue

* put tc on each backend into a SECTION

* change SECTION title

* add DYNAMIC_SECTION for capi unit test

* change 'devices' to 'device_names'

* change trt to tensorrt

* remove uncessary check

* add color_type 'color_ignore_orientation' which is used in ocr

* 'min_width', 'max_width' and 'backend' might be null in pipeline config

* fix clang-format issue

* remove useless code
2021-12-17 19:57:37 +08:00

64 lines
2.1 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
// clang-format off
#include "catch.hpp"
// clang-format on
#include "apis/c/classifier.h"
#include "core/logger.h"
#include "opencv2/opencv.hpp"
#include "test_resource.h"
using namespace std;
TEST_CASE("test classifier's c api", "[classifier]") {
auto test = [](const std::string& device_name, const std::string& model_path,
const std::vector<std::string>& img_list) {
mm_handle_t handle{nullptr};
auto ret =
mmdeploy_classifier_create_by_path(model_path.c_str(), device_name.c_str(), 0, &handle);
REQUIRE(ret == MM_SUCCESS);
vector<cv::Mat> cv_mats;
vector<mm_mat_t> mats;
for (auto& img_path : img_list) {
cv::Mat mat = cv::imread(img_path);
REQUIRE(!mat.empty());
cv_mats.push_back(mat);
mats.push_back({mat.data, mat.rows, mat.cols, mat.channels(), MM_BGR, MM_INT8});
}
mm_class_t* results{nullptr};
int* result_count{nullptr};
ret = mmdeploy_classifier_apply(handle, mats.data(), (int)mats.size(), &results, &result_count);
REQUIRE(ret == MM_SUCCESS);
auto result_ptr = results;
INFO("model_path: {}", model_path);
for (auto i = 0; i < (int)mats.size(); ++i) {
INFO("the {}-th classification result: ", i);
for (int j = 0; j < *result_count; ++j, ++result_ptr) {
INFO("\t label: {}, score: {}", result_ptr->label_id, result_ptr->score);
}
}
mmdeploy_classifier_release_result(results, result_count, (int)mats.size());
mmdeploy_classifier_destroy(handle);
};
auto gResources = MMDeployTestResources::Get();
auto img_lists = gResources.LocateImageResources("mmcls/images");
REQUIRE(!img_lists.empty());
for (auto& backend : gResources.backends()) {
DYNAMIC_SECTION("loop backend: " << backend) {
auto model_list = gResources.LocateModelResources("mmcls/" + backend);
REQUIRE(!model_list.empty());
for (auto& model_path : model_list) {
for (auto& device_name : gResources.device_names(backend)) {
test(device_name, model_path, img_lists);
}
}
}
}
}