9.9 KiB
9.9 KiB
How to convert model
This tutorial briefly introduces how to export an OpenMMlab model to a specific backend using MMDeploy tools. Notes:
- Supported backends are ONNXRuntime, TensorRT, NCNN, PPLNN, OpenVINO.
- Supported codebases are MMClassification, MMDetection, MMSegmentation, MMOCR, MMEditing.
How to convert models from Pytorch to other backends
Prerequisite
- Install and build your target backend. You could refer to ONNXRuntime-install, TensorRT-install, NCNN-install, PPLNN-install, OpenVINO-install for more information.
- Install and build your target codebase. You could refer to MMClassification-install, MMDetection-install, MMSegmentation-install, MMOCR-install, MMEditing-install.
Usage
python ./tools/deploy.py \
${DEPLOY_CFG_PATH} \
${MODEL_CFG_PATH} \
${MODEL_CHECKPOINT_PATH} \
${INPUT_IMG} \
--test-img ${TEST_IMG} \
--work-dir ${WORK_DIR} \
--calib-dataset-cfg ${CALIB_DATA_CFG} \
--device ${DEVICE} \
--log-level INFO \
--show \
--dump-info
Description of all arguments
deploy_cfg
: The path of deploy config file in MMDeploy codebase.model_cfg
: The path of model config file in OpenMMLab codebase.checkpoint
: The path of model checkpoint file.img
: The path of image file that used to convert model.--test-img
: The path of image file that used to test model. If not specified, it will be set toNone
.--work-dir
: The path of work directory that used to save logs and models.--calib-dataset-cfg
: Config used for calibration. If not specified, it will be set toNone
.--device
: The device used for conversion. If not specified, it will be set tocpu
.--log-level
: To set log level which in'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'
. If not specified, it will be set toINFO
.--show
: Whether to show detection outputs.--dump-info
: Whether to output information for SDK.
How to find the corresponding deployment config of a PyTorch model
- Find model's codebase folder in
configs/
. Example, convert a yolov3 model you need to findconfigs/mmdet
folder. - Find model's task folder in
configs/codebase_folder/
. Just like yolov3 model, you need to findconfigs/mmdet/single-stage
folder. - Find deployment config file in
configs/codebase_folder/task_folder/
. Just like deploy yolov3 model you can useconfigs/mmdet/single-stage/single-stage_onnxruntime_dynamic.py
.
Example
python ./tools/deploy.py \
configs/mmdet/single-stage/single-stage_tensorrt_dynamic-320x320-1344x1344.py \
$PATH_TO_MMDET/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py \
$PATH_TO_MMDET/checkpoints/yolo/yolov3_d53_mstrain-608_273e_coco.pth \
$PATH_TO_MMDET/demo/demo.jpg \
--work-dir work_dir \
--show \
--device cuda:0
How to evaluate the exported models
You can try to evaluate model, referring to how_to_evaluate_a_model.
List of supported models exportable to other backends
The table below lists the models that are guaranteed to be exportable to other backend.
Model | codebase | OnnxRuntime | TensorRT | NCNN | PPLNN | OpenVINO | model config file(example) |
---|---|---|---|---|---|---|---|
RetinaNet | MMDetection | Y | Y | Y | Y | Y | $MMDET_DIR/configs/retinanet/retinanet_r50_fpn_1x_coco.py |
Faster R-CNN | MMDetection | Y | Y | Y | Y | Y | $MMDET_DIR/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py |
YOLOv3 | MMDetection | Y | Y | Y | Y | Y | $MMDET_DIR/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py |
YOLOX | MMDetection | Y | Y | ? | ? | Y | $MMDET_DIR/configs/yolox/yolox_tiny_8x8_300e_coco.py |
FCOS | MMDetection | Y | Y | Y | N | Y | $MMDET_DIR/configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco. |
FSAF | MMDetection | Y | Y | Y | Y | Y | $MMDET_DIR/configs/fsaf/fsaf_r50_fpn_1x_coco.py |
Mask R-CNN | MMDetection | Y | Y | N | Y | Y | $MMDET_DIR/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py |
SSD | MMDetection | Y | Y | Y | Y | Y | $MMDET_DIR/configs/ssd/ssd300_coco.py |
FoveaBox | MMDetection | Y | ? | ? | ? | Y | $MMDET_DIR/configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py |
ATSS | MMDetection | Y | Y | ? | ? | Y | $MMDET_DIR/configs/atss/atss_r50_fpn_1x_coco.py |
Cascade R-CNN | MMDetection | Y | ? | ? | Y | Y | $MMDET_DIR/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py |
Cascade Mask R-CNN | MMDetection | Y | ? | ? | Y | Y | $MMDET_DIR/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py |
VFNet | MMDetection | N | ? | ? | ? | Y | $MMDET_DIR/configs/vfnet/vfnet_r50_fpn_1x_coco.py |
ResNet | MMClassification | Y | Y | Y | Y | N | $MMCLS_DIR/configs/resnet/resnet18_b32x8_imagenet.py |
ResNeXt | MMClassification | Y | Y | Y | Y | N | $MMCLS_DIR/configs/resnext/resnext50_32x4d_b32x8_imagenet.py |
SE-ResNet | MMClassification | Y | Y | Y | Y | N | $MMCLS_DIR/configs/seresnet/seresnet50_b32x8_imagenet.py |
MobileNetV2 | MMClassification | Y | Y | Y | Y | N | $MMCLS_DIR/configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py |
ShuffleNetV1 | MMClassification | Y | Y | Y | Y | N | $MMCLS_DIR/configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py |
ShuffleNetV2 | MMClassification | Y | Y | Y | Y | N | $MMCLS_DIR/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py |
FCN | MMSegmentation | Y | Y | Y | Y | Y | $MMSEG_DIR/configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py |
PSPNet | MMSegmentation | Y | Y | N | Y | Y | $MMSEG_DIR/configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py |
DeepLabV3 | MMSegmentation | Y | Y | Y | Y | Y | $MMSEG_DIR/configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py |
DeepLabV3+ | MMSegmentation | Y | Y | Y | Y | Y | $MMSEG_DIR/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py |
Fast-SCNN | MMSegmentation | Y | Y | N | Y | Y | ${MMSEG_DIR}/configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py |
SRCNN | MMEditing | Y | Y | N | Y | N | $MMSEG_DIR/configs/restorers/srcnn/srcnn_x4k915_g1_1000k_div2k.py |
ESRGAN | MMEditing | Y | Y | N | Y | N | $MMSEG_DIR/configs/restorers/esrgan/esrgan_psnr_x4c64b23g32_g1_1000k_div2k.py |
DBNet | MMOCR | Y | Y | Y | Y | Y | $MMOCR_DIR/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py |
CRNN | MMOCR | Y | Y | Y | Y | N | $MMOCR_DIR/configs/textrecog/crnn/crnn_academic_dataset.py |
Reminders
- None
FAQs
- None