mmdeploy/README.md

166 lines
9.4 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

<div align="center">
<img src="resources/mmdeploy-logo.png" width="450"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
</div>
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdeploy.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmdeploy/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdeploy/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdeploy/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdeploy)
[![license](https://img.shields.io/github/license/open-mmlab/mmdeploy.svg)](https://github.com/open-mmlab/mmdeploy/blob/master/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/open-mmlab/mmdeploy)](https://github.com/open-mmlab/mmdeploy/issues)
[![open issues](https://img.shields.io/github/issues-raw/open-mmlab/mmdeploy)](https://github.com/open-mmlab/mmdeploy/issues)
English | [简体中文](README_zh-CN.md)
## Introduction
MMDeploy is an open-source deep learning model deployment toolset. It is a part of the [OpenMMLab](https://openmmlab.com/) project.
<div align="center">
<img src="resources/introduction.png">
</div>
## Main features
### Fully support OpenMMLab models
The currently supported codebases and models are as follows, and more will be included in the future
- [mmcls](docs/en/04-supported-codebases/mmcls.md)
- [mmdet](docs/en/04-supported-codebases/mmdet.md)
- [mmseg](docs/en/04-supported-codebases/mmseg.md)
- [mmedit](docs/en/04-supported-codebases/mmedit.md)
- [mmocr](docs/en/04-supported-codebases/mmocr.md)
- [mmpose](docs/en/04-supported-codebases/mmpose.md)
- [mmdet3d](docs/en/04-supported-codebases/mmdet3d.md)
- [mmrotate](docs/en/04-supported-codebases/mmrotate.md)
### Multiple inference backends are available
The supported Device-Platform-InferenceBackend matrix is presented as following, and more will be compatible.
The benchmark can be found from [here](docs/en/03-benchmark/benchmark.md)
| Device / Platform | Linux | Windows | macOS | Android |
| ----------------- | --------------------------------------------------------------- | --------------------------------------- | -------- | ---------------- |
| x86_64 CPU | ✔ONNX Runtime<br>pplnn<br>ncnn<br>OpenVINO<br>LibTorch | ✔ONNX Runtime<br>OpenVINO | - | - |
| ARM CPU | ✔ncnn | - | - | ✔ncnn |
| RISC-V | ✔ncnn | - | - | - |
| NVIDIA GPU | ✔ONNX Runtime<br>TensorRT<br>pplnn<br>LibTorch | ✔ONNX Runtime<br>TensorRT<br>pplnn | - | - |
| NVIDIA Jetson | ✔TensorRT | ✔TensorRT | - | - |
| Huawei ascend310 | ✔CANN | - | - | - |
| Rockchip | ✔RKNN | - | - | - |
| Apple M1 | - | - | ✔CoreML | - |
| Adreno GPU | - | - | - | ✔ncnn<br>SNPE |
| Hexagon DSP | - | - | - | ✔SNPE |
### Efficient and scalable C/C++ SDK Framework
All kinds of modules in the SDK can be extended, such as `Transform` for image processing, `Net` for Neural Network inference, `Module` for postprocessing and so on
## [Documentation](https://mmdeploy.readthedocs.io/en/latest/)
Please read [getting_started](docs/en/get_started.md) for the basic usage of MMDeploy. We also provide tutoials about:
- [Build](docs/en/01-how-to-build/build_from_source.md)
- [Build from Docker](docs/en/01-how-to-build/build_from_docker.md)
- [Build from Script](docs/en/01-how-to-build/build_from_script.md)
- [Build for Linux](docs/en/01-how-to-build/linux-x86_64.md)
- [Build for macOS](docs/en/01-how-to-build/macos-arm64.md)
- [Build for Win10](docs/en/01-how-to-build/windows.md)
- [Build for Android](docs/en/01-how-to-build/android.md)
- [Build for Jetson](docs/en/01-how-to-build/jetsons.md)
- [Build for SNPE](docs/en/01-how-to-build/snpe.md)
- [Cross Build for aarch64](docs/en/01-how-to-build/cross_build_ncnn_aarch64.md)
- User Guide
- [How to convert model](docs/en/02-how-to-run/convert_model.md)
- [How to write config](docs/en/02-how-to-run/write_config.md)
- [How to profile model](docs/en/02-how-to-run/profile_model.md)
- [How to quantize model](docs/en/02-how-to-run/quantize_model.md)
- [Useful tools](docs/en/02-how-to-run/useful_tools.md)
- Developer Guide
- [Architecture](docs/en/07-developer-guide/architecture.md)
- [How to support new models](docs/en/07-developer-guide/support_new_model.md)
- [How to support new backends](docs/en/07-developer-guide/support_new_backend.md)
- [How to partition model](docs/en/07-developer-guide/partition_model.md)
- [How to test rewritten model](docs/en/07-developer-guide/test_rewritten_models.md)
- [How to test backend ops](docs/en/07-developer-guide/add_backend_ops_unittest.md)
- [How to do regression test](docs/en/07-developer-guide/regression_test.md)
- Custom Backend Ops
- [ncnn](docs/en/06-custom-ops/ncnn.md)
- [onnxruntime](docs/en/06-custom-ops/onnxruntime.md)
- [tensorrt](docs/en/06-custom-ops/tensorrt.md)
- [FAQ](docs/en/faq.md)
- [Contributing](.github/CONTRIBUTING.md)
## Benchmark and Model zoo
You can find the supported models from [here](docs/en/03-benchmark/supported_models.md) and their performance in the [benchmark](docs/en/03-benchmark/benchmark.md).
## Contributing
We appreciate all contributions to MMDeploy. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
## Acknowledgement
We would like to sincerely thank the following teams for their contributions to [MMDeploy](https://github.com/open-mmlab/mmdeploy):
- [OpenPPL](https://github.com/openppl-public)
- [OpenVINO](https://github.com/openvinotoolkit/openvino)
- [ncnn](https://github.com/Tencent/ncnn)
## Citation
If you find this project useful in your research, please consider citing:
```BibTeX
@misc{=mmdeploy,
title={OpenMMLab's Model Deployment Toolbox.},
author={MMDeploy Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmdeploy}},
year={2021}
}
```
## License
This project is released under the [Apache 2.0 license](LICENSE).
## Projects in OpenMMLab
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.