175 lines
6.3 KiB
Markdown
175 lines
6.3 KiB
Markdown
# Build for SNPE
|
|
|
|
It is quite simple to support snpe backend: Client/Server mode.
|
|
|
|
this mode
|
|
|
|
1. Can split `model convert` and `inference` environments;
|
|
|
|
- Inference irrelevant matters are done on host
|
|
- We can get the real running results of gpu/npu instead of cpu simulation values
|
|
|
|
2. Can cover cost-sensitive device, armv7/risc-v/mips chips meet product requirements, but often have limited support for Python;
|
|
|
|
3. Can simplify mmdeploy installation steps. If you only want to convert snpe model and test, you don't need to compile the .whl package.
|
|
|
|
## 1. Run inference server
|
|
|
|
Download the prebuilt snpe inference server package, `adb push` it to the phone and execute.
|
|
Note that **the phone must have a qcom chip**.
|
|
|
|
```bash
|
|
$ wget https://media.githubusercontent.com/media/tpoisonooo/mmdeploy_snpe_testdata/main/snpe-inference-server-1.59.tar.gz
|
|
...
|
|
$ sudo apt install adb
|
|
$ adb push snpe-inference-server-1.59.tar.gz /data/local/tmp/
|
|
|
|
# decompress and execute
|
|
$ adb shell
|
|
venus:/ $ cd /data/local/tmp
|
|
130|venus:/data/local/tmp $ tar xvf snpe-inference-server-1.59.tar.gz
|
|
...
|
|
130|venus:/data/local/tmp $ source export1.59.sh
|
|
130|venus:/data/local/tmp $ ./inference_server
|
|
...
|
|
Server listening on [::]:60000
|
|
```
|
|
|
|
At this point the inference service should print all the ipv6 and ipv4 addresses of the device and listen on the port.
|
|
|
|
tips:
|
|
|
|
- If `adb devices` cannot find the device, may be:
|
|
- Some cheap cables can only charge and cannot transmit data
|
|
- or the "developer mode" of the phone is not turned on
|
|
- If you need to compile the binary by self, please refer to [NDK Cross Compiling snpe Inference Service](../appendix/cross_build_snpe_service.md)
|
|
- If a `segmentation fault` occurs when listening on a port, it may be because:
|
|
- The port number is already occupied, use another port
|
|
|
|
## 2. Build mmdeploy
|
|
|
|
### 1) Environment
|
|
|
|
| Matters | Version | Remarks |
|
|
| ------- | ------------------ | ---------------------- |
|
|
| host OS | ubuntu18.04 x86_64 | snpe specified version |
|
|
| Python | **3.6.0** | snpe specified version |
|
|
|
|
### 2) Installation
|
|
|
|
Download [snpe-1.59 from the official website](https://developer.qualcomm.com/qfile/69652/snpe-1.59.0.zip)
|
|
|
|
```bash
|
|
$ unzip snpe-1.59.0.zip
|
|
$ export SNPE_ROOT=${PWD}/snpe-1.59.0.3230
|
|
$ cd /path/to/mmdeploy
|
|
$ export PYTHONPATH=${PWD}/service/snpe/client:${SNPE_ROOT}/lib/python:${PYTHONPATH}
|
|
$ export LD_LIBRARY_PATH=${SNPE_ROOT}/lib/x86_64-linux-clang:${LD_LIBRARY_PATH}
|
|
$ export PATH=${SNPE_ROOT}/bin/x86_64-linux-clang:${PATH}
|
|
$ python3 -m pip install -e .
|
|
```
|
|
|
|
## 3. Test the model
|
|
|
|
Take Resnet-18 as an example. First refer to [documentation to install mmcls](https://github.com/open-mmlab/mmclassification/tree/1.x) and use `tools/deploy.py` to convert the model.
|
|
|
|
```bash
|
|
$ export MODEL_CONFIG=/path/to/mmclassification/configs/resnet/resnet18_8xb16_cifar10.py
|
|
$ export MODEL_PATH=https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20210528-bd6371c8.pth
|
|
|
|
# Convert the model
|
|
$ cd /path/to/mmdeploy
|
|
$ python3 tools/deploy.py configs/mmcls/classification_snpe_static.py $MODEL_CONFIG $MODEL_PATH /path/to/test.png --work-dir resnet18 --device cpu --uri 10.0.0.1\:60000 --dump-info
|
|
|
|
# Test
|
|
$ python3 tools/test.py configs/mmcls/classification_snpe_static.py $MODEL_CONFIG --model reset18/end2end.dlc --metrics accuracy precision f1_score recall --uri 10.0.0.1\:60000
|
|
```
|
|
|
|
Note that `--uri` is required to specify the ip and port of the snpe inference service, ipv4 and ipv6 addresses can be used.
|
|
|
|
## 4. Build SDK with Android SDK
|
|
|
|
If you also need to compile mmdeploy SDK with Android NDK, please continue reading.
|
|
|
|
### 1) Download NDK and OpenCV package and setup environment
|
|
|
|
```bash
|
|
# Download android OCV
|
|
$ export OPENCV_VERSION=4.5.4
|
|
$ wget https://github.com/opencv/opencv/releases/download/${OPENCV_VERSION}/opencv-${OPENCV_VERSION}-android-sdk.zip
|
|
$ unzip opencv-${OPENCV_VERSION}-android-sdk.zip
|
|
|
|
$ export ANDROID_OCV_ROOT=`realpath opencv-${OPENCV_VERSION}-android-sdk`
|
|
|
|
# Download ndk r23b
|
|
$ wget https://dl.google.com/android/repository/android-ndk-r23b-linux.zip
|
|
$ unzip android-ndk-r23b-linux.zip
|
|
|
|
$ export ANDROID_NDK_ROOT=`realpath android-ndk-r23b`
|
|
```
|
|
|
|
### 2) Compile mmdeploy SDK and demo
|
|
|
|
```bash
|
|
$ cd /path/to/mmdeploy
|
|
$ mkdir build && cd build
|
|
$ cmake .. \
|
|
-DMMDEPLOY_BUILD_SDK=ON \
|
|
-DCMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake \
|
|
-DMMDEPLOY_TARGET_BACKENDS=snpe \
|
|
-DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-30 \
|
|
-DANDROID_STL=c++_static \
|
|
-DOpenCV_DIR=${ANDROID_OCV_ROOT}/sdk/native/jni/abi-arm64-v8a \
|
|
-DMMDEPLOY_BUILD_EXAMPLES=ON
|
|
|
|
$ make && make install
|
|
$ tree ./bin
|
|
./bin
|
|
├── image_classification
|
|
├── image_restorer
|
|
├── image_segmentation
|
|
├── mmdeploy_onnx2ncnn
|
|
├── object_detection
|
|
├── ocr
|
|
├── pose_detection
|
|
└── rotated_object_detection
|
|
```
|
|
|
|
| Options | Description |
|
|
| ----------------------------- | ------------------------------------------------------------ |
|
|
| CMAKE_TOOLCHAIN_FILE | Load NDK parameters, mainly used to select compiler |
|
|
| MMDEPLOY_TARGET_BACKENDS=snpe | Inference backend |
|
|
| ANDROID_STL=c++\_static | In case of NDK environment can not find suitable c++ library |
|
|
| MMDEPLOY_SHARED_LIBS=ON | snpe does not provide static library |
|
|
|
|
[Here](../01-how-to-build/cmake_option.md) is all cmake build option description.
|
|
|
|
### 3) Run the demo
|
|
|
|
First make sure that`--dump-info`is used during convert model, so that the `resnet18` directory has the files required by the SDK such as `pipeline.json`.
|
|
|
|
`adb push` the model directory, executable file and .so to the device.
|
|
|
|
```bash
|
|
$ cd /path/to/mmdeploy
|
|
$ adb push resnet18 /data/local/tmp
|
|
$ adb push tests/data/tiger.jpeg /data/local/tmp/resnet18/
|
|
|
|
$ cd /path/to/install/
|
|
$ adb push lib /data/local/tmp
|
|
$ adb push bin/image_classification /data/local/tmp/resnet18/
|
|
```
|
|
|
|
Set up environment variable and execute the sample.
|
|
|
|
```bash
|
|
$ adb push /path/to/mmcls/demo/demo.JPEG /data/local/tmp
|
|
$ adb shell
|
|
venus:/ $ cd /data/local/tmp/resnet18
|
|
venus:/data/local/tmp/resnet18 $ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/data/local/tmp/lib
|
|
|
|
venus:/data/local/tmp/resnet18 $ ./image_classification cpu ./ tiger.jpeg
|
|
..
|
|
label: 3, score: 0.3214
|
|
```
|