181 lines
6.1 KiB
Markdown
181 lines
6.1 KiB
Markdown
# 支持 SNPE
|
||
|
||
mmdeploy 集成 snpe 的方式简单且有效: Client/Server 模式。
|
||
|
||
这种模式
|
||
|
||
1. 能剥离`模型转换`和`推理`环境:
|
||
|
||
- 推理无关事项在算力更高的设备上完成;
|
||
- 对于推理计算,能拿到 gpu/npu 真实运行结果,而非 cpu 模拟数值。
|
||
|
||
2. 能覆盖成本敏感的设备。armv7/risc-v/mips 芯片满足产品需求,但往往对 Python 支持有限;
|
||
|
||
3. 能简化 mmdeploy 安装步骤。如果只想转 snpe 模型测试精度,不需要编译 .whl 包。
|
||
|
||
## 一、运行推理服务
|
||
|
||
下载预编译 snpe 推理服务包, `adb push` 到手机、执行。
|
||
注意**手机要有 qcom 芯片**。
|
||
|
||
```bash
|
||
$ wget https://media.githubusercontent.com/media/tpoisonooo/mmdeploy_snpe_testdata/main/snpe-inference-server-1.59.tar.gz
|
||
...
|
||
$ sudo apt install adb
|
||
$ adb push snpe-inference-server-1.59.tar.gz /data/local/tmp/
|
||
|
||
# 解压运行
|
||
$ adb shell
|
||
venus:/ $ cd /data/local/tmp
|
||
130|venus:/data/local/tmp $ tar xvf snpe-inference-server-1.59.tar.gz
|
||
...
|
||
130|venus:/data/local/tmp $ source export1.59.sh
|
||
130|venus:/data/local/tmp $ ./inference_server 60000
|
||
...
|
||
Server listening on [::]:60000
|
||
```
|
||
|
||
此时推理服务应打印设备所有 ipv6 和 ipv4 地址,并监听端口。
|
||
|
||
tips:
|
||
|
||
- 如果 `adb devices` 找不到设备,可能因为:
|
||
- 有些廉价线只能充电、不能传输数据
|
||
- 或者没有打开手机的“开发者模式”
|
||
- 如果需要自己编译,可参照 [NDK 交叉编译 snpe 推理服务](../appendix/cross_build_snpe_service.md)
|
||
- 如果监听端口时 `segmentation fault`,可能是因为:
|
||
- 端口号已占用,换一个端口
|
||
|
||
## 二、安装 mmdeploy
|
||
|
||
1. 环境要求
|
||
|
||
| 事项 | 版本 | 备注 |
|
||
| ------- | ------------------ | ------------- |
|
||
| host OS | ubuntu18.04 x86_64 | snpe 指定版本 |
|
||
| Python | **3.6.0** | snpe 指定版本 |
|
||
|
||
2. 安装
|
||
|
||
[官网下载 snpe-1.59](https://developer.qualcomm.com/qfile/69652/snpe-1.59.0.zip),解压设置环境变量
|
||
|
||
```bash
|
||
$ unzip snpe-1.59.0.zip
|
||
$ export SNPE_ROOT=${PWD}/snpe-1.59.0.3230
|
||
$ cd /path/to/mmdeploy
|
||
$ export PYTHONPATH=${PWD}/service/snpe/client:${SNPE_ROOT}/lib/python:${PYTHONPATH}
|
||
$ export LD_LIBRARY_PATH=${SNPE_ROOT}/lib/x86_64-linux-clang:${LD_LIBRARY_PATH}
|
||
$ export PATH=${SNPE_ROOT}/bin/x86_64-linux-clang:${PATH}
|
||
$ python3 -m pip install -e .
|
||
```
|
||
|
||
tips:
|
||
|
||
- 如果网络不好,[这个 .tar.gz](https://github.com/tpoisonooo/mmdeploy_snpe_testdata/blob/main/snpe-1.59.tar.gz) 仅减小官方包体积,没有修改原始内容。
|
||
|
||
## 三、测试模型
|
||
|
||
以 Resnet-18 为例。先参照[文档安装 mmcls](https://github.com/open-mmlab/mmclassification/tree/1.x),然后使用 `tools/deploy.py` 转换模型。
|
||
|
||
```bash
|
||
$ export MODEL_CONFIG=/path/to/mmclassification/configs/resnet/resnet18_8xb16_cifar10.py
|
||
$ export MODEL_PATH=https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20210528-bd6371c8.pth
|
||
|
||
# 模型转换
|
||
$ cd /path/to/mmdeploy
|
||
$ python3 tools/deploy.py configs/mmcls/classification_snpe_static.py $MODEL_CONFIG $MODEL_PATH /path/to/test.png --work-dir resnet18 --device cpu --uri 192.168.1.1\:60000 --dump-info
|
||
|
||
# 精度测试
|
||
$ python3 tools/test.py configs/mmcls/classification_snpe_static.py $MODEL_CONFIG --model reset18/end2end.dlc --metrics accuracy precision f1_score recall --uri 192.168.1.1\:60000
|
||
```
|
||
|
||
注意需要 `--uri` 指明 snpe 推理服务的 ip 和端口号,可以使用 ipv4 和 ipv6 地址。
|
||
|
||
## 四、Android NDK 编译 SDK
|
||
|
||
如果你还需要用 Android NDK 编译 mmdeploy SDK,请继续阅读本章节。
|
||
|
||
### 1. 下载 OCV、NDK,设置环境变量
|
||
|
||
```bash
|
||
# 下载 android OCV
|
||
$ export OPENCV_VERSION=4.5.4
|
||
$ wget https://github.com/opencv/opencv/releases/download/${OPENCV_VERSION}/opencv-${OPENCV_VERSION}-android-sdk.zip
|
||
$ unzip opencv-${OPENCV_VERSION}-android-sdk.zip
|
||
|
||
$ export ANDROID_OCV_ROOT=`realpath opencv-${OPENCV_VERSION}-android-sdk`
|
||
|
||
# 下载 ndk r23b
|
||
$ wget https://dl.google.com/android/repository/android-ndk-r23b-linux.zip
|
||
$ unzip android-ndk-r23b-linux.zip
|
||
|
||
$ export ANDROID_NDK_ROOT=`realpath android-ndk-r23b`
|
||
```
|
||
|
||
### 2. 编译 mmdeploy SDK 和 demo
|
||
|
||
```bash
|
||
$ cd /path/to/mmdeploy
|
||
$ mkdir build && cd build
|
||
$ cmake .. \
|
||
-DMMDEPLOY_BUILD_SDK=ON \
|
||
-DCMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake \
|
||
-DMMDEPLOY_TARGET_BACKENDS=snpe \
|
||
-DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-30 \
|
||
-DANDROID_STL=c++_static \
|
||
-DOpenCV_DIR=${ANDROID_OCV_ROOT}/sdk/native/jni/abi-arm64-v8a \
|
||
-DMMDEPLOY_BUILD_EXAMPLES=ON
|
||
|
||
$ make && make install
|
||
$ tree ./bin
|
||
./bin
|
||
├── image_classification
|
||
├── image_restorer
|
||
├── image_segmentation
|
||
├── mmdeploy_onnx2ncnn
|
||
├── object_detection
|
||
├── ocr
|
||
├── pose_detection
|
||
└── rotated_object_detection
|
||
```
|
||
|
||
选项说明
|
||
|
||
| 选项 | 说明 |
|
||
| ----------------------------- | ------------------------------------- |
|
||
| CMAKE_TOOLCHAIN_FILE | 加载 NDK 参数,主要用于选择编译器版本 |
|
||
| MMDEPLOY_TARGET_BACKENDS=snpe | 使用 snpe 推理 |
|
||
| ANDROID_STL=c++\_static | 避免 NDK 环境找不到合适的 c++ lib |
|
||
| MMDEPLOY_SHARED_LIBS=ON | 官方 snpe 没有提供静态库 |
|
||
|
||
[这里](../01-how-to-build/cmake_option.md)是完整的编译选项说明
|
||
|
||
## 3. 运行 demo
|
||
|
||
先确认测试模型用了 `--dump-info`,这样 `resnet18` 目录才有 `pipeline.json` 等 SDK 所需文件。
|
||
|
||
把 dump 好的模型目录、可执行文件和 lib 都 `adb push` 到设备里
|
||
|
||
```bash
|
||
$ cd /path/to/mmdeploy
|
||
$ adb push resnet18 /data/local/tmp
|
||
$ adb push tests/data/tiger.jpeg /data/local/tmp/resnet18/
|
||
|
||
$ cd /path/to/install/
|
||
$ adb push lib /data/local/tmp
|
||
$ adb push bin/image_classification /data/local/tmp/resnet18/
|
||
```
|
||
|
||
设置环境变量,执行样例
|
||
|
||
```bash
|
||
$ adb push /path/to/mmcls/demo/demo.JPEG /data/local/tmp
|
||
$ adb shell
|
||
venus:/ $ cd /data/local/tmp/resnet18
|
||
venus:/data/local/tmp/resnet18 $ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/data/local/tmp/lib
|
||
|
||
venus:/data/local/tmp/resnet18 $ ./image_classification cpu ./ tiger.jpeg
|
||
..
|
||
label: 3, score: 0.3214
|
||
```
|