67 lines
2.4 KiB
Markdown
67 lines
2.4 KiB
Markdown
# onnxruntime 支持情况
|
|
|
|
## Introduction of ONNX Runtime
|
|
|
|
**ONNX Runtime** is a cross-platform inference and training accelerator compatible with many popular ML/DNN frameworks. Check its [github](https://github.com/microsoft/onnxruntime) for more information.
|
|
|
|
## Installation
|
|
|
|
*Please note that only **onnxruntime>=1.8.1** of CPU version on Linux platform is supported by now.*
|
|
|
|
- Install ONNX Runtime python package
|
|
|
|
```bash
|
|
pip install onnxruntime==1.8.1
|
|
```
|
|
|
|
## Build custom ops
|
|
|
|
### Prerequisite
|
|
|
|
- Download `onnxruntime-linux` from ONNX Runtime [releases](https://github.com/microsoft/onnxruntime/releases/tag/v1.8.1), extract it, expose `ONNXRUNTIME_DIR` and finally add the lib path to `LD_LIBRARY_PATH` as below:
|
|
|
|
```bash
|
|
wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz
|
|
|
|
tar -zxvf onnxruntime-linux-x64-1.8.1.tgz
|
|
cd onnxruntime-linux-x64-1.8.1
|
|
export ONNXRUNTIME_DIR=$(pwd)
|
|
export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH
|
|
```
|
|
|
|
### Build on Linux
|
|
|
|
```bash
|
|
cd ${MMDEPLOY_DIR} # To MMDeploy root directory
|
|
mkdir -p build && cd build
|
|
cmake -DMMDEPLOY_TARGET_BACKENDS=ort -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} ..
|
|
make -j$(nproc) && make install
|
|
```
|
|
|
|
## How to convert a model
|
|
|
|
- You could follow the instructions of tutorial [How to convert model](../02-how-to-run/convert_model.md)
|
|
|
|
## How to add a new custom op
|
|
|
|
## Reminder
|
|
|
|
- The custom operator is not included in [supported operator list](https://github.com/microsoft/onnxruntime/blob/master/docs/OperatorKernels.md) in ONNX Runtime.
|
|
- The custom operator should be able to be exported to ONNX.
|
|
|
|
#### Main procedures
|
|
|
|
Take custom operator `roi_align` for example.
|
|
|
|
1. Create a `roi_align` directory in ONNX Runtime source directory `${MMDEPLOY_DIR}/csrc/backend_ops/onnxruntime/`
|
|
2. Add header and source file into `roi_align` directory `${MMDEPLOY_DIR}/csrc/backend_ops/onnxruntime/roi_align/`
|
|
3. Add unit test into `tests/test_ops/test_ops.py`
|
|
Check [here](../../../tests/test_ops/test_ops.py) for examples.
|
|
|
|
**Finally, welcome to send us PR of adding custom operators for ONNX Runtime in MMDeploy.** :nerd_face:
|
|
|
|
## References
|
|
|
|
- [How to export Pytorch model with custom op to ONNX and run it in ONNX Runtime](https://github.com/onnx/tutorials/blob/master/PyTorchCustomOperator/README.md)
|
|
- [How to add a custom operator/kernel in ONNX Runtime](https://onnxruntime.ai/docs/reference/operators/add-custom-op.html)
|