mmdeploy/docs/zh_cn/05-supported-backends/onnxruntime.md

67 lines
2.4 KiB
Markdown

# onnxruntime 支持情况
## Introduction of ONNX Runtime
**ONNX Runtime** is a cross-platform inference and training accelerator compatible with many popular ML/DNN frameworks. Check its [github](https://github.com/microsoft/onnxruntime) for more information.
## Installation
*Please note that only **onnxruntime>=1.8.1** of CPU version on Linux platform is supported by now.*
- Install ONNX Runtime python package
```bash
pip install onnxruntime==1.8.1
```
## Build custom ops
### Prerequisite
- Download `onnxruntime-linux` from ONNX Runtime [releases](https://github.com/microsoft/onnxruntime/releases/tag/v1.8.1), extract it, expose `ONNXRUNTIME_DIR` and finally add the lib path to `LD_LIBRARY_PATH` as below:
```bash
wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz
tar -zxvf onnxruntime-linux-x64-1.8.1.tgz
cd onnxruntime-linux-x64-1.8.1
export ONNXRUNTIME_DIR=$(pwd)
export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH
```
### Build on Linux
```bash
cd ${MMDEPLOY_DIR} # To MMDeploy root directory
mkdir -p build && cd build
cmake -DMMDEPLOY_TARGET_BACKENDS=ort -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} ..
make -j$(nproc) && make install
```
## How to convert a model
- You could follow the instructions of tutorial [How to convert model](../02-how-to-run/convert_model.md)
## How to add a new custom op
## Reminder
- The custom operator is not included in [supported operator list](https://github.com/microsoft/onnxruntime/blob/master/docs/OperatorKernels.md) in ONNX Runtime.
- The custom operator should be able to be exported to ONNX.
#### Main procedures
Take custom operator `roi_align` for example.
1. Create a `roi_align` directory in ONNX Runtime source directory `${MMDEPLOY_DIR}/csrc/backend_ops/onnxruntime/`
2. Add header and source file into `roi_align` directory `${MMDEPLOY_DIR}/csrc/backend_ops/onnxruntime/roi_align/`
3. Add unit test into `tests/test_ops/test_ops.py`
Check [here](../../../tests/test_ops/test_ops.py) for examples.
**Finally, welcome to send us PR of adding custom operators for ONNX Runtime in MMDeploy.** :nerd_face:
## References
- [How to export Pytorch model with custom op to ONNX and run it in ONNX Runtime](https://github.com/onnx/tutorials/blob/master/PyTorchCustomOperator/README.md)
- [How to add a custom operator/kernel in ONNX Runtime](https://onnxruntime.ai/docs/reference/operators/add-custom-op.html)