mmdeploy/tests/test_codebase/test_mmcls/test_classification.py

120 lines
3.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory
import mmcv
import numpy as np
import pytest
import torch
import mmdeploy.backend.onnxruntime as ort_apis
from mmdeploy.apis import build_task_processor
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Codebase, load_config
from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper
import_codebase(Codebase.MMCLS)
model_cfg_path = 'tests/test_codebase/test_mmcls/data/model.py'
model_cfg = load_config(model_cfg_path)[0]
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmcls', task='Classification'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['output'])))
onnx_file = NamedTemporaryFile(suffix='.onnx').name
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
img_shape = (64, 64)
num_classes = 1000
img = np.random.rand(*img_shape, 3)
def test_init_pytorch_model():
from mmcls.models.classifiers.base import BaseClassifier
model = task_processor.init_pytorch_model(None)
assert isinstance(model, BaseClassifier)
@pytest.fixture
def backend_model():
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(outputs={
'output': torch.rand(1, num_classes),
})
yield task_processor.init_backend_model([''])
wrapper.recover()
def test_init_backend_model(backend_model):
assert isinstance(backend_model, torch.nn.Module)
def test_create_input():
inputs = task_processor.create_input(img, input_shape=img_shape)
assert isinstance(inputs, tuple) and len(inputs) == 2
def test_run_inference(backend_model):
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
results = task_processor.run_inference(backend_model, input_dict)
assert results is not None
def test_visualize(backend_model):
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
results = task_processor.run_inference(backend_model, input_dict)
with TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
task_processor.visualize(backend_model, img, results[0], filename, '')
assert os.path.exists(filename)
def test_get_tensor_from_input():
input_data = {'img': torch.ones(3, 4, 5)}
inputs = task_processor.get_tensor_from_input(input_data)
assert torch.equal(inputs, torch.ones(3, 4, 5))
def test_get_partition_cfg():
try:
_ = task_processor.get_partition_cfg(partition_type='')
except NotImplementedError:
pass
def test_build_dataset_and_dataloader():
from torch.utils.data import Dataset, DataLoader
dataset = task_processor.build_dataset(
dataset_cfg=model_cfg, dataset_type='test')
assert isinstance(dataset, Dataset), 'Failed to build dataset'
dataloader = task_processor.build_dataloader(dataset, 1, 1)
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
def test_single_gpu_test_and_evaluate():
from mmcv.parallel import MMDataParallel
dataset = task_processor.build_dataset(
dataset_cfg=model_cfg, dataset_type='test')
dataloader = task_processor.build_dataloader(dataset, 1, 1)
# Prepare dummy model
model = DummyModel(outputs=[torch.rand([1, 1000])])
model = MMDataParallel(model, device_ids=[0])
assert model is not None
# Run test
outputs = task_processor.single_gpu_test(model, dataloader)
assert outputs is not None
task_processor.evaluate_outputs(model_cfg, outputs, dataset)