2022-06-22 22:32:14 +08:00

149 lines
4.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(3, ),
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
test=dict(
type=dataset_type,
data_prefix='tests/test_codebase/test_mmcls/data/imgs',
ann_file='ann.txt',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')
model = dict(
type='ImageClassifier',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(3, ),
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5)))
dataset_type = 'ImageNet'
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
]
train_dataloader = dict(
batch_size=32,
num_workers=5,
dataset=dict(
type='ImageNet',
data_root='tests/test_codebase/test_mmcls/data/imgs',
ann_file='ann.txt',
data_prefix='train',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs')
]),
sampler=dict(type='DefaultSampler', shuffle=True),
persistent_workers=True)
val_dataloader = dict(
batch_size=32,
num_workers=5,
dataset=dict(
type='ImageNet',
data_root='tests/test_codebase/test_mmcls/data/imgs',
ann_file='ann.txt',
data_prefix='val',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
]),
sampler=dict(type='DefaultSampler', shuffle=False),
persistent_workers=True)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
test_dataloader = dict(
batch_size=32,
num_workers=5,
dataset=dict(
type='ImageNet',
data_root='tests/test_codebase/test_mmcls/data/imgs',
ann_file='ann.txt',
data_prefix='val',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
]),
sampler=dict(type='DefaultSampler', shuffle=False),
persistent_workers=True)
test_evaluator = dict(type='Accuracy', topk=(1, 5))
optim_wrapper = dict(
optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001))
param_scheduler = dict(
type='MultiStepLR', by_epoch=True, milestones=[30, 60, 90], gamma=0.1)
train_cfg = dict(by_epoch=True, max_epochs=100)
val_cfg = dict(interval=1)
test_cfg = dict()
default_scope = 'mmcls'
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=100),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='VisualizationHook', enable=False))
env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'))
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='ClsVisualizer',
vis_backends=[dict(type='LocalVisBackend')],
name='visualizer')
log_level = 'INFO'
load_from = None
resume = False