mmdeploy/tests/test_ops/test_ops.py

857 lines
32 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import onnx
import pytest
import torch
import torch.nn as nn
from mmcv import Config
from onnx.helper import (make_graph, make_model, make_node,
make_tensor_value_info)
from mmdeploy.core import RewriterContext
from mmdeploy.utils.test import WrapFunction, assert_allclose
from .utils import TestNCNNExporter, TestOnnxRTExporter, TestTensorRTExporter
TEST_ONNXRT = TestOnnxRTExporter()
TEST_TENSORRT = TestTensorRTExporter()
TEST_NCNN = TestNCNNExporter()
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
@pytest.mark.parametrize('pool_h,pool_w,spatial_scale,sampling_ratio',
[(2, 2, 1.0, 2), (4, 4, 2.0, 4)])
def test_roi_align(backend,
pool_h,
pool_w,
spatial_scale,
sampling_ratio,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
input = torch.rand(1, 1, 16, 16, dtype=torch.float32)
single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
else:
input = torch.tensor(input_list[0], dtype=torch.float32)
single_roi = torch.tensor(input_list[1], dtype=torch.float32)
from mmcv.ops import roi_align
def wrapped_function(torch_input, torch_rois):
return roi_align(torch_input, torch_rois, (pool_w, pool_h),
spatial_scale, sampling_ratio, 'avg', True)
wrapped_model = WrapFunction(wrapped_function).eval()
with RewriterContext(
Config({'backend_config': {
'type': backend.backend_name
}}),
backend=backend.backend_name,
opset=11):
backend.run_and_validate(
wrapped_model, [input, single_roi],
'roi_align',
input_names=['input', 'rois'],
output_names=['roi_feat'],
save_dir=save_dir)
@pytest.mark.parametrize('backend', [TEST_TENSORRT, TEST_ONNXRT])
@pytest.mark.parametrize('mode', ['bilinear', 'nearest'])
@pytest.mark.parametrize('padding_mode', ['zeros', 'border', 'reflection'])
@pytest.mark.parametrize('align_corners', [True, False])
def test_grid_sample(backend,
mode,
padding_mode,
align_corners,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
input = torch.rand(1, 1, 10, 10)
else:
input = torch.tensor(input_list[0])
grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
grid = nn.functional.affine_grid(
grid, (1, 1, input.shape[2] * 2, input.shape[3] * 2)).type_as(input)
def wrapped_function(inputs, grid):
return nn.functional.grid_sample(
inputs,
grid,
mode=mode,
padding_mode=padding_mode,
align_corners=align_corners)
wrapped_model = WrapFunction(wrapped_function).eval()
with RewriterContext(
Config({'backend_config': {
'type': backend.backend_name
}}),
backend=backend.backend_name,
opset=11):
backend.run_and_validate(
wrapped_model, [input, grid],
'grid_sampler',
input_names=['input', 'grid'],
output_names=['output'],
save_dir=save_dir)
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
@pytest.mark.parametrize('dynamic_export', [True, False])
@pytest.mark.parametrize('mode', ['bicubic', 'nearest'])
@pytest.mark.parametrize('align_corners', [True, False])
@pytest.mark.parametrize('output_size', [[10, 20], None])
@pytest.mark.parametrize('scale_factor', [2])
@pytest.mark.parametrize('n, c, h, w', [(2, 3, 5, 10)])
def test_bicubic_interpolate(backend,
dynamic_export,
mode,
align_corners,
output_size,
scale_factor,
n,
c,
h,
w,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
input = torch.randn(n, c, h, w)
if dynamic_export:
dynamic_axes = {
'input': {
0: 'n',
2: 'h',
3: 'w',
},
'output': {
0: 'n',
2: 'h',
3: 'w',
},
}
else:
dynamic_axes = None
if mode == 'nearest':
align_corners = None
if output_size is None:
resize = nn.Upsample(
scale_factor=scale_factor, mode=mode, align_corners=align_corners)
else:
resize = nn.Upsample(
size=output_size, mode=mode, align_corners=align_corners)
expected_result = resize(input).cuda()
wrapped_model = WrapFunction(resize).eval()
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
backend.run_and_validate(
wrapped_model, [input],
'bicubic_interpolate',
input_names=['input'],
dynamic_axes=dynamic_axes,
output_names=['output'],
save_dir=save_dir,
expected_result=expected_result)
@pytest.mark.parametrize('backend', [TEST_TENSORRT, TEST_ONNXRT])
@pytest.mark.parametrize('in_channels,out_channels,stride,padding,'
'dilation,groups,deform_groups,kernel_size',
[(3, 64, 1, 0, 1, 1, 1, 3),
(1, 32, 3, 2, 1, 1, 1, 3)])
@pytest.mark.parametrize('bias', [True, False])
def test_modulated_deform_conv(backend,
in_channels,
out_channels,
stride,
padding,
dilation,
groups,
deform_groups,
kernel_size,
bias,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
input = torch.rand(
1, in_channels, 28, 28, requires_grad=False) # (n, c, h, w)
else:
input = torch.tensor(input_list[0])
conv_offset = nn.Conv2d(
in_channels=in_channels,
out_channels=deform_groups * 3 * kernel_size * kernel_size,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=True)
out = conv_offset(input)
o1, o2, mask = torch.chunk(out, 3, dim=1)
offset = torch.cat((o1, o2), dim=1)
mask = torch.sigmoid(mask)
from mmcv.ops import ModulatedDeformConv2d
model = ModulatedDeformConv2d(in_channels, out_channels, kernel_size,
stride, padding, dilation, groups,
deform_groups, bias).eval()
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
backend.run_and_validate(
model, [input, offset, mask],
'modulated_deform_conv',
input_names=['input', 'offset', 'mask'],
output_names=['output'],
save_dir=save_dir)
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
@pytest.mark.parametrize('in_channels,out_channels,stride,padding,'
'dilation,groups,deform_groups,kernel_size',
[(3, 64, 1, 0, 1, 1, 1, 3),
(1, 32, 3, 2, 1, 1, 1, 3)])
def test_deform_conv(backend,
in_channels,
out_channels,
stride,
padding,
dilation,
groups,
deform_groups,
kernel_size,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
input = torch.rand(
1, in_channels, 28, 28, requires_grad=False) # (n, c, h, w)
else:
input = torch.tensor(input_list[0])
conv_offset = nn.Conv2d(
in_channels=in_channels,
out_channels=deform_groups * 2 * kernel_size * kernel_size,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=True)
offset = conv_offset(input)
from mmcv.ops import DeformConv2d
model = DeformConv2d(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, deform_groups).eval()
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
backend.run_and_validate(
model, [input, offset],
'deform_conv',
input_names=['input', 'offset'],
output_names=['output'],
save_dir=save_dir)
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
@pytest.mark.parametrize('dynamic_export', [True, False])
@pytest.mark.parametrize('fp16_mode', [True, False])
@pytest.mark.parametrize('n, c, h, w', [(2, 3, 10, 10)])
def test_instance_norm(backend,
dynamic_export,
fp16_mode,
n,
c,
h,
w,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
input = torch.randn(n, c, h, w)
if dynamic_export:
dynamic_axes = {
'input': {
0: 'n',
2: 'h',
3: 'w',
},
'output': {
0: 'n',
2: 'h',
3: 'w',
},
}
else:
dynamic_axes = None
norm = nn.InstanceNorm2d(c, affine=True)
wrapped_model = WrapFunction(norm).eval()
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
backend.run_and_validate(
wrapped_model, [input],
'instance_norm',
input_names=['input'],
dynamic_axes=dynamic_axes,
output_names=['output'],
save_dir=save_dir)
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
@pytest.mark.parametrize('num_classes,pre_topk,after_topk,iou_threshold,'
'score_threshold,background_label_id',
[(5, 6, 3, 0.7, 0.1, -1)])
def test_batched_nms(backend,
num_classes,
pre_topk,
after_topk,
iou_threshold,
score_threshold,
background_label_id,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
nms_boxes = torch.tensor([[[291.1746, 316.2263, 343.5029, 347.7312],
[288.4846, 315.0447, 343.7267, 346.5630],
[288.5307, 318.1989, 341.6425, 349.7222],
[918.9102, 83.7463, 933.3920, 164.9041],
[895.5786, 78.2361, 907.8049, 172.0883],
[292.5816, 316.5563, 340.3462, 352.9989],
[609.4592, 83.5447, 631.2532, 144.0749],
[917.7308, 85.5870, 933.2839, 168.4530],
[895.5138, 79.3596, 908.2865, 171.0418],
[291.4747, 318.6987, 347.1208, 349.5754]]])
scores = torch.tensor([[[0.9577, 0.9745, 0.3030, 0.6589, 0.2742],
[0.1618, 0.7963, 0.5124, 0.6964, 0.6850],
[0.8425, 0.4843, 0.9489, 0.8068, 0.7340],
[0.7337, 0.4340, 0.9923, 0.0704, 0.4506],
[0.3090, 0.5606, 0.6939, 0.3764, 0.6920],
[0.0044, 0.7986, 0.2221, 0.2782, 0.4378],
[0.7293, 0.2735, 0.8381, 0.0264, 0.6278],
[0.7144, 0.1066, 0.4125, 0.4041, 0.8819],
[0.4963, 0.7891, 0.6908, 0.1499, 0.5584],
[0.4385, 0.6035, 0.0508, 0.0662, 0.5938]]])
else:
nms_boxes = torch.tensor(input_list[0], dtype=torch.float32)
scores = torch.tensor(input_list[1], dtype=torch.float32)
from mmdeploy.codebase.mmdet.core.post_processing import _multiclass_nms
expected_result = _multiclass_nms(
nms_boxes,
scores,
iou_threshold=iou_threshold,
score_threshold=score_threshold,
pre_top_k=pre_topk + 1,
keep_top_k=after_topk + 1)
expected_result = (expected_result[0][:,
0:-1, :], expected_result[1][:,
0:-1])
boxes = nms_boxes.unsqueeze(2).tile(num_classes, 1)
from mmdeploy.mmcv.ops.nms import TRTBatchedNMSop
batched_nms = TRTBatchedNMSop.apply
def wrapped_function(boxes, scores):
return batched_nms(boxes, scores, num_classes, pre_topk, after_topk,
iou_threshold, score_threshold, background_label_id)
wrapped_model = WrapFunction(wrapped_function)
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
backend.run_and_validate(
wrapped_model, [boxes, scores],
'batched_nms',
input_names=['boxes', 'scores'],
output_names=['batched_nms_bboxes', 'inds'],
expected_result=expected_result,
save_dir=save_dir)
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
@pytest.mark.parametrize(
'out_size, pool_mode, sampling_ratio,roi_scale_factor,'
' finest_scale,featmap_strides, aligned',
[(tuple([2, 2]), 0, 2, 1.0, 2, list([2.0, 4.0]), 1),
(tuple([2, 2]), 1, 2, 1.0, 2, list([2.0, 4.0]), 1)])
def test_multi_level_roi_align(backend,
out_size,
pool_mode,
sampling_ratio,
roi_scale_factor,
finest_scale,
featmap_strides,
aligned,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
input = [
torch.tensor([[[[0.3014, 0.7334, 0.6502, 0.1689],
[0.3031, 0.3735, 0.6032, 0.1644],
[0.0393, 0.4415, 0.3858, 0.2657],
[0.5766, 0.0211, 0.6384, 0.0016]],
[[0.0811, 0.6255, 0.0247, 0.3471],
[0.1390, 0.9298, 0.6178, 0.6636],
[0.2243, 0.2024, 0.2366, 0.3660],
[0.1050, 0.2301, 0.7489, 0.7506]],
[[0.3868, 0.1706, 0.2390, 0.8494],
[0.2643, 0.9347, 0.0412, 0.5790],
[0.6202, 0.0682, 0.0390, 0.5296],
[0.5383, 0.1221, 0.6344, 0.1514]]]]),
torch.tensor([[[[0.1939, 0.9983, 0.4031, 0.2712],
[0.7929, 0.1504, 0.0946, 0.5030],
[0.1421, 0.7908, 0.9595, 0.4198],
[0.6880, 0.4722, 0.9896, 0.2266]],
[[0.0778, 0.4232, 0.0736, 0.0168],
[0.2887, 0.8461, 0.1140, 0.9582],
[0.5169, 0.4924, 0.8275, 0.5530],
[0.8961, 0.7466, 0.5976, 0.3760]],
[[0.1542, 0.5028, 0.8412, 0.6617],
[0.3751, 0.2798, 0.3835, 0.8640],
[0.5821, 0.6588, 0.1324, 0.7619],
[0.9178, 0.7282, 0.0291, 0.3028]]]])
]
rois = torch.tensor([[0., 0., 0., 4., 4.]])
if pool_mode == 1:
expected_result = torch.tensor([[[[0.1939, 0.3950],
[0.3437, 0.4543]],
[[0.0778, 0.1641],
[0.1305, 0.2301]],
[[0.1542, 0.2413],
[0.2094, 0.2688]]]])
else:
expected_result = torch.tensor([[[[0.1939, 0.4956],
[0.4185, 0.5167]],
[[0.0778, 0.2073],
[0.1569, 0.3162]],
[[0.1542, 0.2849],
[0.2370, 0.3053]]]])
else:
input = input_list[0]
rois = input_list[1]
expected_result = input_list[2]
input_name = [('input_' + str(i)) for i in range(len(featmap_strides))]
input_name.insert(0, 'rois')
inputs = [
onnx.helper.make_tensor_value_info(
input_name[i + 1], onnx.TensorProto.FLOAT, shape=input[i].shape)
for i in range(len(input_name) - 1)
]
inputs.append(
onnx.helper.make_tensor_value_info(
'rois', onnx.TensorProto.FLOAT, shape=rois.shape))
outputs = [
onnx.helper.make_tensor_value_info(
'bbox_feats', onnx.TensorProto.FLOAT, shape=expected_result.shape)
]
node = onnx.helper.make_node(
'MMCVMultiLevelRoiAlign',
input_name, ['bbox_feats'],
'MMCVMultiLevelRoiAlign_0',
None,
'mmdeploy',
pool_mode=pool_mode,
aligned=aligned,
featmap_strides=featmap_strides,
finest_scale=finest_scale,
output_height=out_size[0],
output_width=out_size[1],
roi_scale_factor=roi_scale_factor,
sampling_ratio=sampling_ratio)
graph = onnx.helper.make_graph([node], 'torch-jit-export', inputs, outputs)
onnx_model = onnx.helper.make_model(
graph, producer_name='pytorch', producer_version='1.8')
onnx_model.opset_import[0].version = 11
onnx_model.opset_import.append(
onnx.onnx_ml_pb2.OperatorSetIdProto(domain='mmdeploy', version=1))
backend.run_and_validate(
onnx_model, [rois, *input],
'multi_level_roi_align',
input_names=input_name,
output_names=['bbox_feats'],
expected_result=expected_result,
save_dir=save_dir)
@pytest.mark.parametrize('backend', [TEST_NCNN])
@pytest.mark.parametrize('k', [1, 3, 5])
@pytest.mark.parametrize('dim', [1, 2, 3])
@pytest.mark.parametrize('largest', [True, False])
@pytest.mark.parametrize('sorted', [True, False])
def test_topk(backend,
k,
dim,
largest,
sorted,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
input = torch.rand(1, 8, 12, 17)
else:
input = input_list[0]
assert input.shape[0] == 1, (f'ncnn batch must be 1, \
but got {input.shape[0]}')
def topk_function(inputs):
return torch.Tensor.topk(inputs, k, dim, largest, sorted)
wrapped_model = WrapFunction(topk_function)
# when the 'sorted' attribute is False, pytorch will return
# a hard to expect result, which only features that the topk
# number is right. So the Topk unittest only check whether the
# topk elements are right, all the possible order will be accepted.
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
if not sorted:
backend.run_and_validate(
wrapped_model, [input.float()],
'topk' + f'_no_sorted_dim_{dim}',
input_names=['inputs'],
output_names=['data', 'index'],
save_dir=save_dir)
else:
backend.run_and_validate(
wrapped_model, [input.float()],
'topk',
input_names=['inputs'],
output_names=['data', 'index'],
save_dir=save_dir)
@pytest.mark.parametrize('backend', [TEST_NCNN])
@pytest.mark.parametrize('dim, n, c, h, w', [(1, 1, 1, 1, 8), (2, 1, 1, 5, 7),
(3, 1, 3, 10, 15)])
def test_shape(backend,
dim,
n,
c,
h,
w,
input_names=['input'],
output_names=['output'],
tolerate_small_mismatch=False,
input_list=None,
save_dir=None):
backend.check_env()
orig_shape = (n, c, h, w)[-dim - 1:]
if input_list is None:
input = torch.rand(orig_shape)
else:
input = input_list[0]
assert input.dim() == dim + 1, 'input.dim() must equal to dim + 1'
assert tuple(input.shape) == orig_shape, 'input.shape must the \
same as orig_shape'
assert input.shape[0] == 1, (f'ncnn batch must be 1, \
but got {input.shape[0]}')
shape_node = make_node('Shape', input_names, output_names)
assert len(input_names) == 1, 'length of input_names must be 1'
assert len(output_names) == 1, 'length of output_names must be 1'
shape_graph = make_graph([shape_node], 'shape_graph', [
make_tensor_value_info(input_names[0], onnx.TensorProto.FLOAT,
orig_shape)
], [
make_tensor_value_info(output_names[0], onnx.TensorProto.FLOAT,
(dim + 1, ))
])
shape_model = make_model(shape_graph)
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
ncnn_model = backend.onnx2ncnn(shape_model, 'shape', output_names,
save_dir)
# ncnn mat has implicit batch for mat, the ncnn_output is a mat,
# so the ncnn_outputs has 2 dimensions, not 1.
model_outputs = [torch.tensor(orig_shape).unsqueeze(0).float()]
ncnn_outputs = ncnn_model(dict(zip(input_names, [input])))
ncnn_outputs = [ncnn_outputs[name] for name in output_names]
assert_allclose(model_outputs, ncnn_outputs, tolerate_small_mismatch)
@pytest.mark.parametrize('backend', [TEST_NCNN])
@pytest.mark.parametrize('dim, n, c, h, w', [(1, 1, 1, 1, 8), (2, 1, 1, 5, 7),
(3, 1, 3, 10, 15)])
@pytest.mark.parametrize('val', [0., 1., -3, 4.25])
def test_constantofshape(backend,
dim,
n,
c,
h,
w,
val,
input_names=['input'],
output_names=['output'],
tolerate_small_mismatch=False,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
input = torch.tensor((n, c, h, w)[-dim - 1:]).unsqueeze(0)
else:
input = input_list[0]
assert input.dim() == dim + 1, 'input.dim() must equal to dim + 1'
assert tuple(input.shape) == (n, c, h,
w)[-dim - 1:], 'input.shape must the \
same as orig_shape'
assert input.shape[0] == 1, (f'ncnn input batch must be 1, \
got {input.shape[0]}')
assert input[0][0] == 1, (f'ncnn output mat batch must be 1, \
got {input[0][0]}')
constantofshape_node = make_node(
'ConstantOfShape', input_names, output_names, value=float(val))
assert len(input_names) == 1, 'length of input_names must be 1'
assert len(output_names) == 1, 'length of output_names must be 1'
constantofshape_graph = make_graph(
[constantofshape_node], 'constantofshape_graph', [
make_tensor_value_info(input_names[0], onnx.TensorProto.FLOAT,
input.shape)
], [
make_tensor_value_info(output_names[0], onnx.TensorProto.FLOAT,
torch.Size(input[0]))
])
constantofshape_model = make_model(constantofshape_graph)
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
ncnn_model = backend.onnx2ncnn(constantofshape_model,
'constantofshape', output_names,
save_dir)
# ncnn mat has implicit batch for mat, the ncnn_output is a mat,
# so the ncnn_outputs has 2 dimensions, not 1.
model_outputs = [torch.fill_(torch.rand(tuple(input[0])), val)]
ncnn_outputs = ncnn_model(dict(zip(input_names, [input.float()])))
ncnn_outputs = [ncnn_outputs[name] for name in output_names]
assert_allclose(model_outputs, ncnn_outputs, tolerate_small_mismatch)
@pytest.mark.parametrize('backend', [TEST_NCNN])
@pytest.mark.parametrize('axis, data_dims, indice_dims', [(0, 1, 1), (0, 2, 1),
(1, 2, 1), (0, 3, 1),
(1, 3, 1),
(2, 3, 1)])
def test_gather(backend,
axis,
data_dims,
indice_dims,
input_names=['input', 'indices'],
output_names=['output'],
tolerate_small_mismatch=False,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
# the real data dims is data_dims + 1
data = torch.rand((8, 12, 17)[-data_dims:]).unsqueeze(0)
indice = torch.randint(0, 8, (3, 4, 5)[-indice_dims:]).unsqueeze(0)
else:
data = input_list[0]
indice = input_list[1]
assert data.shape[0] == 1, (f'ncnn batch must be 1, \
but got {data.shape[0]}')
assert indice.shape[0] == 1, (f'ncnn batch must be 1, \
but got {indice.shape[0]}')
gather_node = make_node('Gather', input_names, output_names, axis=axis + 1)
gather_graph = make_graph([gather_node], 'gather_graph', [
make_tensor_value_info(input_names[0], onnx.TensorProto.FLOAT, None),
make_tensor_value_info(input_names[1], onnx.TensorProto.INT64, None)
], [make_tensor_value_info(output_names[0], onnx.TensorProto.FLOAT, None)])
gather_model = make_model(gather_graph)
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
ncnn_model = backend.onnx2ncnn(gather_model, 'gather', output_names,
save_dir)
# ncnn mat has implicit batch for mat, the ncnn_output is a mat,
# so the ncnn_outputs has 2 dimensions, not 1.
import importlib
import onnxruntime
assert importlib.util.find_spec('onnxruntime') is not None, 'onnxruntime \
not installed.'
import numpy as np
session = onnxruntime.InferenceSession(gather_model.SerializeToString())
model_outputs = session.run(
output_names,
dict(
zip(input_names, [
np.array(data, dtype=np.float32),
np.array(indice[0], dtype=np.int64)
])))
model_outputs = [model_output for model_output in model_outputs]
ncnn_outputs = ncnn_model(
dict(zip(input_names, [data.float(), indice.float()])))
ncnn_outputs = [ncnn_outputs[name] for name in output_names]
assert_allclose(model_outputs, ncnn_outputs, tolerate_small_mismatch)
@pytest.mark.parametrize('backend', [TEST_NCNN])
@pytest.mark.parametrize('dim', [1, 2, 3])
def test_tensorslice(backend, dim, input_list=None, save_dir=None):
backend.check_env()
if input_list is None:
input = torch.rand((8, 12, 17)[-dim:]).unsqueeze(0)
else:
input = input_list[0]
assert input.dim() == dim + 1, f'input.dim() must equal to \
dim + 1, expected: {dim + 1}, got: {input.dim()}'
assert input.shape[0] == 1, (f'ncnn batch must be 1, \
but got {input.shape[0]}')
def tensorslice_function(inputs):
if dim == 1:
return inputs[:, 2:17:7]
if dim == 2:
return inputs[:, 3:12:4, 2:15:3]
if dim == 3:
return inputs[:, 0:8:2, 2:12:4, 2:17:7]
wrapped_model = WrapFunction(tensorslice_function)
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
backend.run_and_validate(
wrapped_model, [input.float()],
'tensorslice',
input_names=['inputs'],
output_names=['outputs'],
save_dir=save_dir)
@pytest.mark.parametrize('backend', [TEST_NCNN])
@pytest.mark.parametrize('input_dim, output_dim', [(1, 1), (1, 2), (1, 3),
(2, 2), (2, 3), (3, 3)])
def test_expand(backend,
input_dim,
output_dim,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
input = torch.rand((1, 12, 1)[-input_dim:]).unsqueeze(0)
target = torch.rand((8, 12, 17)[-output_dim:]).unsqueeze(0)
else:
input = input_list[0]
target = input_list[1]
assert input.shape[0] == 1, (f'ncnn batch must be 1, \
but not {input.shape[0]}')
assert target.shape[0] == 1, (f'ncnn batch must be 1, \
but not {target.shape[0]}')
def expand_function(input, target):
return input.expand_as(target)
wrapped_model = WrapFunction(expand_function)
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
backend.run_and_validate(
wrapped_model, [input.float(), target.float()],
'expand',
input_names=['input', 'shape'],
output_names=['output'],
save_dir=save_dir)
@pytest.mark.parametrize('backend', [TEST_ONNXRT])
@pytest.mark.parametrize('iou_threshold', [0.1, 0.3])
@pytest.mark.parametrize('score_threshold', [0., 0.1])
def test_nms_rotated(backend, iou_threshold, score_threshold, save_dir=None):
backend.check_env()
boxes = torch.tensor(
[[[60, 75, 20, 50, 0], [65, 80, 10, 40, 0], [30, 30, 40, 40, 0]],
[[60, 75, 20, 50, 0], [65, 80, 10, 40, 0], [30, 30, 40, 40, 0]]],
dtype=torch.float32)
scores = torch.tensor(
[[[0.5, 0.1, 0.1], [0.1, 0.6, 0.1], [0.1, 0.1, 0.7], [0.1, 0.1, 0.1]],
[[0.1, 0.1, 0.1], [0.7, 0.1, 0.1], [0.1, 0.6, 0.1], [0.1, 0.1, 0.5]]],
dtype=torch.float32)
from mmdeploy.mmcv.ops import ONNXNMSRotatedOp
def wrapped_function(torch_boxes, torch_scores):
return ONNXNMSRotatedOp.apply(torch_boxes, torch_scores, iou_threshold,
score_threshold)
wrapped_model = WrapFunction(wrapped_function).eval()
with RewriterContext(
Config({'backend_config': {
'type': backend.backend_name
}}),
backend=backend.backend_name,
opset=11):
backend.run_and_validate(
wrapped_model, [boxes, scores],
'nms_rotated',
input_names=['boxes', 'scores'],
output_names=['keep_inds'],
save_dir=save_dir)
@pytest.mark.parametrize('backend', [TEST_ONNXRT])
@pytest.mark.parametrize('pool_h,pool_w,spatial_scale,sampling_ratio',
[(2, 2, 1.0, 2), (4, 4, 2.0, 4)])
def test_roi_align_rotated(backend,
pool_h,
pool_w,
spatial_scale,
sampling_ratio,
input_list=None,
save_dir=None):
backend.check_env()
if input_list is None:
# input = torch.rand(1, 1, 16, 16, dtype=torch.float32)
input = torch.tensor([[[[1., 2.], [3., 4.]]]], dtype=torch.float32)
single_roi = torch.tensor([[0., 0.5, 0.5, 1., 1., 0]],
dtype=torch.float32)
else:
input = torch.tensor(input_list[0], dtype=torch.float32)
single_roi = torch.tensor(input_list[1], dtype=torch.float32)
from mmcv.ops import roi_align_rotated
def wrapped_function(torch_input, torch_rois):
return roi_align_rotated(torch_input, torch_rois, (pool_w, pool_h),
spatial_scale, sampling_ratio, True, False)
wrapped_model = WrapFunction(wrapped_function).eval()
with RewriterContext(
Config({'backend_config': {
'type': backend.backend_name
}}),
backend=backend.backend_name,
opset=11):
backend.run_and_validate(
wrapped_model, [input, single_roi],
'roi_align_rotated',
input_names=['input', 'rois'],
output_names=['roi_feat'],
save_dir=save_dir)