301 lines
11 KiB
C++
301 lines
11 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include "catch.hpp"
|
|
#include "core/mat.h"
|
|
#include "core/utils/device_utils.h"
|
|
#include "preprocess/cpu/opencv_utils.h"
|
|
#include "preprocess/transform/transform.h"
|
|
#include "test_resource.h"
|
|
#include "test_utils.h"
|
|
|
|
using namespace mmdeploy;
|
|
using namespace std;
|
|
using namespace mmdeploy::test;
|
|
|
|
// return {target_height, target_width}
|
|
tuple<int, int> GetTargetSize(const cv::Mat& src, int size0, int size1) {
|
|
assert(size0 > 0);
|
|
if (size1 > 0) {
|
|
return {size0, size1};
|
|
} else {
|
|
if (src.rows < src.cols) {
|
|
return {size0, size0 * src.cols / src.rows};
|
|
} else {
|
|
return {size0 * src.rows / src.cols, size0};
|
|
}
|
|
}
|
|
}
|
|
|
|
// return {target_height, target_width}
|
|
tuple<int, int> GetTargetSize(const cv::Mat& src, int scale0, int scale1, bool keep_ratio) {
|
|
auto w = src.cols;
|
|
auto h = src.rows;
|
|
auto max_long_edge = max(scale0, scale1);
|
|
auto max_short_edge = min(scale0, scale1);
|
|
if (keep_ratio) {
|
|
auto scale_factor =
|
|
std::min(max_long_edge * 1.0 / std::max(h, w), max_short_edge * 1.0 / std::min(h, w));
|
|
return {int(h * scale_factor + 0.5f), int(w * scale_factor + 0.5f)};
|
|
} else {
|
|
return {scale0, scale1};
|
|
}
|
|
}
|
|
|
|
void TestResize(const Value& cfg, const std::string& device_name, const cv::Mat& mat,
|
|
int dst_height, int dst_width) {
|
|
if (MMDeployTestResources::Get().HasDevice(device_name)) {
|
|
Device device{device_name.c_str()};
|
|
Stream stream{device};
|
|
|
|
auto transform = CreateTransform(cfg, device, stream);
|
|
REQUIRE(transform != nullptr);
|
|
|
|
auto interpolation = cfg["interpolation"].get<string>();
|
|
auto ref_mat = mmdeploy::cpu::Resize(mat, dst_height, dst_width, interpolation);
|
|
|
|
auto res = transform->Process({{"img", cpu::CVMat2Tensor(mat)}});
|
|
REQUIRE(!res.has_error());
|
|
auto res_tensor = res.value()["img"].get<Tensor>();
|
|
REQUIRE(res_tensor.device().device_id() == device.device_id());
|
|
REQUIRE(res_tensor.device().platform_id() == device.platform_id());
|
|
REQUIRE(res_tensor.device() == device);
|
|
REQUIRE(Shape(res.value(), "img_shape") ==
|
|
vector<int64_t>{1, ref_mat.rows, ref_mat.cols, ref_mat.channels()});
|
|
REQUIRE(Shape(res.value(), "img_shape") == res_tensor.desc().shape);
|
|
|
|
const Device kHost{"cpu"};
|
|
auto host_tensor = MakeAvailableOnDevice(res_tensor, kHost, stream);
|
|
REQUIRE(stream.Wait());
|
|
|
|
auto res_mat = mmdeploy::cpu::Tensor2CVMat(host_tensor.value());
|
|
REQUIRE(mmdeploy::cpu::Compare(ref_mat, res_mat));
|
|
cv::imwrite("ref.bmp", ref_mat);
|
|
cv::imwrite("res.bmp", res_mat);
|
|
}
|
|
}
|
|
|
|
void TestResizeWithScale(const Value& cfg, const std::string& device_name, const cv::Mat& mat,
|
|
int scale0, int scale1, bool keep_ratio) {
|
|
if (MMDeployTestResources::Get().HasDevice(device_name)) {
|
|
Device device{device_name.c_str()};
|
|
Stream stream{device};
|
|
auto transform = CreateTransform(cfg, device, stream);
|
|
REQUIRE(transform != nullptr);
|
|
|
|
auto [dst_height, dst_width] = GetTargetSize(mat, scale0, scale1, keep_ratio);
|
|
auto interpolation = cfg["interpolation"].get<string>();
|
|
auto ref_mat = mmdeploy::cpu::Resize(mat, dst_height, dst_width, interpolation);
|
|
|
|
Value input{{"img", cpu::CVMat2Tensor(mat)}, {"scale", {scale0, scale1}}};
|
|
auto res = transform->Process(input);
|
|
REQUIRE(!res.has_error());
|
|
auto res_tensor = res.value()["img"].get<Tensor>();
|
|
REQUIRE(res_tensor.device() == device);
|
|
REQUIRE(Shape(res.value(), "img_shape") ==
|
|
vector<int64_t>{1, ref_mat.rows, ref_mat.cols, ref_mat.channels()});
|
|
REQUIRE(Shape(res.value(), "img_shape") == res_tensor.desc().shape);
|
|
|
|
const Device kHost{"cpu"};
|
|
auto host_tensor = MakeAvailableOnDevice(res_tensor, kHost, stream);
|
|
REQUIRE(stream.Wait());
|
|
|
|
auto res_mat = mmdeploy::cpu::Tensor2CVMat(host_tensor.value());
|
|
REQUIRE(mmdeploy::cpu::Compare(ref_mat, res_mat));
|
|
// cv::imwrite("ref.bmp", ref_mat);
|
|
// cv::imwrite("res.bmp", res_mat);
|
|
}
|
|
}
|
|
|
|
void TestResizeWithScaleFactor(const Value& cfg, const std::string& device_name, const cv::Mat& mat,
|
|
float scale_factor) {
|
|
if (MMDeployTestResources::Get().HasDevice(device_name)) {
|
|
Device device{device_name.c_str()};
|
|
Stream stream{device};
|
|
auto transform = CreateTransform(cfg, device, stream);
|
|
REQUIRE(transform != nullptr);
|
|
|
|
auto [dst_height, dst_width] = make_tuple(mat.rows * scale_factor, mat.cols * scale_factor);
|
|
auto interpolation = cfg["interpolation"].get<string>();
|
|
auto ref_mat = mmdeploy::cpu::Resize(mat, dst_height, dst_width, interpolation);
|
|
|
|
Value input{{"img", cpu::CVMat2Tensor(mat)}, {"scale_factor", scale_factor}};
|
|
auto res = transform->Process(input);
|
|
REQUIRE(!res.has_error());
|
|
auto res_tensor = res.value()["img"].get<Tensor>();
|
|
REQUIRE(res_tensor.device() == device);
|
|
REQUIRE(Shape(res.value(), "img_shape") ==
|
|
vector<int64_t>{1, ref_mat.rows, ref_mat.cols, ref_mat.channels()});
|
|
REQUIRE(Shape(res.value(), "img_shape") == res_tensor.desc().shape);
|
|
|
|
const Device kHost{"cpu"};
|
|
auto host_tensor = MakeAvailableOnDevice(res_tensor, kHost, stream);
|
|
auto res_mat = mmdeploy::cpu::Tensor2CVMat(host_tensor.value());
|
|
REQUIRE(mmdeploy::cpu::Compare(ref_mat, res_mat));
|
|
// cv::imwrite("ref.bmp", ref_mat);
|
|
// cv::imwrite("res.bmp", res_mat);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("resize transform: size", "[resize]") {
|
|
auto gResource = MMDeployTestResources::Get();
|
|
auto img_list = gResource.LocateImageResources("transform");
|
|
REQUIRE(!img_list.empty());
|
|
|
|
auto img_path = img_list.front();
|
|
cv::Mat bgr_mat = cv::imread(img_path, cv::IMREAD_COLOR);
|
|
cv::Mat gray_mat = cv::imread(img_path, cv::IMREAD_GRAYSCALE);
|
|
cv::Mat bgr_float_mat;
|
|
cv::Mat gray_float_mat;
|
|
bgr_mat.convertTo(bgr_float_mat, CV_32FC3);
|
|
gray_mat.convertTo(gray_float_mat, CV_32FC1);
|
|
|
|
vector<cv::Mat> mats{bgr_mat, gray_mat, bgr_float_mat, gray_float_mat};
|
|
vector<string> interpolations{"bilinear", "nearest", "area", "bicubic", "lanczos"};
|
|
set<string> cuda_interpolations{"bilinear", "nearest"};
|
|
constexpr const char* kHost = "cpu";
|
|
SECTION("tuple size with -1") {
|
|
for (auto& mat : mats) {
|
|
auto size = std::max(mat.rows, mat.cols) + 10;
|
|
for (auto& interp : interpolations) {
|
|
Value cfg{{"type", "Resize"},
|
|
{"size", {size, -1}},
|
|
{"keep_ratio", false},
|
|
{"interpolation", interp}};
|
|
auto [dst_height, dst_width] = GetTargetSize(mat, size, -1);
|
|
TestResize(cfg, kHost, mat, dst_height, dst_width);
|
|
if (cuda_interpolations.find(interp) != cuda_interpolations.end()) {
|
|
TestResize(cfg, "cuda", mat, dst_height, dst_width);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SECTION("no need to resize") {
|
|
for (auto& mat : mats) {
|
|
auto size = std::min(mat.rows, mat.cols);
|
|
for (auto& interp : interpolations) {
|
|
Value cfg{{"type", "Resize"},
|
|
{"size", {size, -1}},
|
|
{"keep_ratio", false},
|
|
{"interpolation", interp}};
|
|
auto [dst_height, dst_width] = GetTargetSize(mat, size, -1);
|
|
TestResize(cfg, kHost, mat, dst_height, dst_width);
|
|
}
|
|
}
|
|
}
|
|
|
|
SECTION("fixed integer size") {
|
|
for (auto& mat : mats) {
|
|
constexpr int size = 224;
|
|
for (auto& interp : interpolations) {
|
|
Value cfg{
|
|
{"type", "Resize"}, {"size", size}, {"keep_ratio", false}, {"interpolation", interp}};
|
|
TestResize(cfg, kHost, mat, size, size);
|
|
if (cuda_interpolations.find(interp) != cuda_interpolations.end()) {
|
|
TestResize(cfg, "cuda", mat, size, size);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SECTION("fixed size: [1333, 800]. keep_ratio: true") {
|
|
constexpr int max_long_edge = 1333;
|
|
constexpr int max_short_edge = 800;
|
|
bool keep_ratio = true;
|
|
for (auto& mat : mats) {
|
|
for (auto& interp : interpolations) {
|
|
Value cfg{{"type", "Resize"},
|
|
{"size", {max_long_edge, max_short_edge}},
|
|
{"keep_ratio", keep_ratio},
|
|
{"interpolation", interp}};
|
|
auto [dst_height, dst_width] =
|
|
GetTargetSize(mat, max_long_edge, max_short_edge, keep_ratio);
|
|
TestResize(cfg, kHost, mat, dst_height, dst_width);
|
|
if (cuda_interpolations.find(interp) != cuda_interpolations.end()) {
|
|
TestResize(cfg, "cuda", mat, dst_height, dst_width);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SECTION("fixed size: [1333, 800]. keep_ratio: false") {
|
|
constexpr int dst_height = 800;
|
|
constexpr int dst_width = 1333;
|
|
bool keep_ratio = false;
|
|
for (auto& mat : mats) {
|
|
for (auto& interp : interpolations) {
|
|
Value cfg{{"type", "Resize"},
|
|
{"size", {dst_height, dst_width}},
|
|
{"keep_ratio", keep_ratio},
|
|
{"interpolation", interp}};
|
|
TestResize(cfg, kHost, mat, dst_height, dst_width);
|
|
if (cuda_interpolations.find(interp) != cuda_interpolations.end()) {
|
|
TestResize(cfg, "cuda", mat, dst_height, dst_width);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SECTION("fixed size: [800, 1333]. keep_ratio: true") {
|
|
constexpr int dst_height = 800;
|
|
constexpr int dst_width = 1333;
|
|
bool keep_ratio = true;
|
|
for (auto& mat : mats) {
|
|
for (auto& interp : interpolations) {
|
|
Value cfg{{"type", "Resize"},
|
|
{"size", {dst_height, dst_width}},
|
|
{"keep_ratio", keep_ratio},
|
|
{"interpolation", interp}};
|
|
TestResizeWithScale(cfg, kHost, mat, dst_height, dst_width, keep_ratio);
|
|
}
|
|
}
|
|
}
|
|
|
|
SECTION("img_scale: [800, 1333]. keep_ratio: false") {
|
|
constexpr int dst_height = 800;
|
|
constexpr int dst_width = 1333;
|
|
bool keep_ratio = false;
|
|
for (auto& mat : mats) {
|
|
for (auto& interp : interpolations) {
|
|
Value cfg{{"type", "Resize"},
|
|
{"size", {dst_height, dst_width}},
|
|
{"keep_ratio", keep_ratio},
|
|
{"interpolation", interp}};
|
|
TestResizeWithScale(cfg, kHost, mat, dst_height, dst_width, keep_ratio);
|
|
}
|
|
}
|
|
}
|
|
|
|
SECTION("scale_factor: 0.5") {
|
|
float scale_factor = 0.5;
|
|
bool keep_ratio = true;
|
|
for (auto& mat : mats) {
|
|
for (auto& interp : interpolations) {
|
|
Value cfg{{"type", "Resize"},
|
|
{"size", {600, 800}},
|
|
{"keep_ratio", keep_ratio},
|
|
{"interpolation", interp}};
|
|
TestResizeWithScaleFactor(cfg, kHost, mat, scale_factor);
|
|
}
|
|
}
|
|
}
|
|
|
|
SECTION("resize 4 channel image") {
|
|
cv::Mat mat = cv::imread(img_path, cv::IMREAD_COLOR);
|
|
cv::Mat bgra_mat;
|
|
cv::cvtColor(bgr_mat, bgra_mat, cv::COLOR_BGR2BGRA);
|
|
assert(bgra_mat.channels() == 4);
|
|
constexpr int size = 256;
|
|
auto [dst_height, dst_width] = GetTargetSize(bgra_mat, size, -1);
|
|
for (auto& device_name : gResource.device_names()) {
|
|
for (auto& interp : cuda_interpolations) {
|
|
Value cfg{{"type", "Resize"},
|
|
{"size", {size, -1}},
|
|
{"keep_ratio", false},
|
|
{"interpolation", interp}};
|
|
TestResize(cfg, device_name, bgra_mat, dst_height, dst_width);
|
|
}
|
|
}
|
|
}
|
|
}
|