mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* executor prototype * add split/when_all * fix GCC build * WIP let_value * fix let_value * WIP ensure_started * ensure_started & start_detached * fix let_value + when_all combo on MSVC 142 * fix static thread pool * generic just, then, let_value, sync_wait * minor * generic split and when_all * fully generic sender adapters * when_all: workaround for GCC7 * support legacy spdlog * fix memleak * bulk * static detector * fix bulk & first pipeline * bulk for static thread pools * fix on MSVC * WIP async batch submission * WIP collation * async batch * fix detector * fix async detector * fix * fix * debug * fix cuda allocator * WIP type erased executor * better type erasure * simplify C API impl * Expand & type erase TC * deduction guide for type erased senders * fix GCC build * when_all for arrays of Value senders * WIP pipeline v2 * WIP pipeline parser * WIP timed batch operation * add registry * experiment * fix pipeline * naming * fix mem-leak * fix deferred batch operation * WIP * WIP configurable scheduler * WIP configurable scheduler * add comment * parse scheduler config * force link schedulers * WIP pipeable sender * WIP CPO * ADL isolation and dismantle headers * type erase single thread context * fix MSVC build * CPO * replace decay_t with remove_cvref_t * structure adjustment * structure adjustment * apply CPOs & C API rework * refine C API * detector async C API * adjust detector async C API * # Conflicts: # csrc/apis/c/detector.cpp * fix when_all for type erased senders * support void return for Then * async detector * fix some CPOs * minor * WIP rework capture mechanism for type erased types * minor fix * fix MSVC build * move expand.h to execution * make `Expand` pipeable * fix type erased * un-templatize `_TypeErasedOperation` * re-work C API * remove async_detector C API * fix pipeline * add flatten & unflatten * fix flatten & unflatten * add aync OCR demo * config executor for nodes & better executor API * working async OCR example * minor * dynamic batch via scheduler * dynamic batch on `Value` * fix MSVC build * type erase dynamic batch scheduler * sender as Python Awaitable * naming * naming * add docs * minor * merge tmp branch * unify C APIs * fix ocr * unify APIs * fix typo * update async OCR demo * add v3 API text recognizer * fix v3 API * fix lint * add license info & reformat * add demo async_ocr_v2 * revert files * revert files * resolve link issues * fix scheduler linkage for shared libs * fix license header * add docs for `mmdeploy_executor_split` * add missing `mmdeploy_executor_transfer_just` and `mmdeploy_executor_execute` * make `TimedSingleThreadContext` header only * fix lint * simplify type-erased sender
131 lines
5.1 KiB
C
131 lines
5.1 KiB
C
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
/**
|
|
* @file classifier.h
|
|
* @brief Interface to MMClassification task
|
|
*/
|
|
|
|
#ifndef MMDEPLOY_CLASSIFIER_H
|
|
#define MMDEPLOY_CLASSIFIER_H
|
|
|
|
#include "common.h"
|
|
#include "executor.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
typedef struct mm_class_t {
|
|
int label_id;
|
|
float score;
|
|
} mm_class_t;
|
|
|
|
/**
|
|
* @brief Create classifier's handle
|
|
* @param[in] model an instance of mmclassification sdk model created by
|
|
* \ref mmdeploy_model_create_by_path or \ref mmdeploy_model_create in \ref model.h
|
|
* @param[in] device_name name of device, such as "cpu", "cuda", etc.
|
|
* @param[in] device_id id of device.
|
|
* @param[out] handle instance of a classifier, which must be destroyed
|
|
* by \ref mmdeploy_classifier_destroy
|
|
* @return status of creating classifier's handle
|
|
*/
|
|
MMDEPLOY_API int mmdeploy_classifier_create(mm_model_t model, const char* device_name,
|
|
int device_id, mm_handle_t* handle);
|
|
|
|
/**
|
|
* @brief Create classifier's handle
|
|
* @param[in] model_path path of mmclassification sdk model exported by mmdeploy model converter
|
|
* @param[in] device_name name of device, such as "cpu", "cuda", etc.
|
|
* @param[in] device_id id of device.
|
|
* @param[out] handle instance of a classifier, which must be destroyed
|
|
* by \ref mmdeploy_classifier_destroy
|
|
* @return status of creating classifier's handle
|
|
*/
|
|
MMDEPLOY_API int mmdeploy_classifier_create_by_path(const char* model_path, const char* device_name,
|
|
int device_id, mm_handle_t* handle);
|
|
|
|
/**
|
|
* @brief Use classifier created by \ref mmdeploy_classifier_create_by_path to get label
|
|
* information of each image in a batch
|
|
* @param[in] handle classifier's handle created by \ref mmdeploy_classifier_create_by_path
|
|
* @param[in] mats a batch of images
|
|
* @param[in] mat_count number of images in the batch
|
|
* @param[out] results a linear buffer to save classification results of each
|
|
* image, which must be freed by \ref mmdeploy_classifier_release_result
|
|
* @param[out] result_count a linear buffer with length being \p mat_count to save the number of
|
|
* classification results of each image. It must be released by \ref
|
|
* mmdeploy_classifier_release_result
|
|
* @return status of inference
|
|
*/
|
|
MMDEPLOY_API int mmdeploy_classifier_apply(mm_handle_t handle, const mm_mat_t* mats, int mat_count,
|
|
mm_class_t** results, int** result_count);
|
|
|
|
/**
|
|
* @brief Release the inference result buffer created \ref mmdeploy_classifier_apply
|
|
* @param[in] results classification results buffer
|
|
* @param[in] result_count \p results size buffer
|
|
* @param[in] count length of \p result_count
|
|
*/
|
|
MMDEPLOY_API void mmdeploy_classifier_release_result(mm_class_t* results, const int* result_count,
|
|
int count);
|
|
|
|
/**
|
|
* @brief Destroy classifier's handle
|
|
* @param[in] handle classifier's handle created by \ref mmdeploy_classifier_create_by_path
|
|
*/
|
|
MMDEPLOY_API void mmdeploy_classifier_destroy(mm_handle_t handle);
|
|
|
|
/**
|
|
* @brief Same as \ref mmdeploy_classifier_create, but allows to control execution context of tasks
|
|
* via exec_info
|
|
*/
|
|
MMDEPLOY_API int mmdeploy_classifier_create_v2(mm_model_t model, const char* device_name,
|
|
int device_id, mmdeploy_exec_info_t exec_info,
|
|
mm_handle_t* handle);
|
|
|
|
/**
|
|
* @brief Pack classifier inputs into mmdeploy_value_t
|
|
* @param[in] mats a batch of images
|
|
* @param[in] mat_count number of images in the batch
|
|
* @param[out] value the packed value
|
|
* @return status of the operation
|
|
*/
|
|
MMDEPLOY_API int mmdeploy_classifier_create_input(const mm_mat_t* mats, int mat_count,
|
|
mmdeploy_value_t* value);
|
|
|
|
/**
|
|
* @brief Same as \ref mmdeploy_classifier_apply, but input and output are packed in \ref
|
|
* mmdeploy_value_t.
|
|
*/
|
|
MMDEPLOY_API int mmdeploy_classifier_apply_v2(mm_handle_t handle, mmdeploy_value_t input,
|
|
mmdeploy_value_t* output);
|
|
|
|
/**
|
|
* @brief Apply classifier asynchronously
|
|
* @param[in] handle handle of the classifier
|
|
* @param[in] input input sender that will be consumed by the operation
|
|
* @param[out] output output sender
|
|
* @return status of the operation
|
|
*/
|
|
MMDEPLOY_API int mmdeploy_classifier_apply_async(mm_handle_t handle, mmdeploy_sender_t input,
|
|
mmdeploy_sender_t* output);
|
|
|
|
/**
|
|
*
|
|
* @param[in] output output obtained by applying a classifier
|
|
* @param[out] results a linear buffer containing classification results of each image, released by
|
|
* \ref mmdeploy_classifier_release_result
|
|
* @param[out] result_count a linear buffer containing the number of results for each input image,
|
|
* released by \ref mmdeploy_classifier_release_result
|
|
* @return status of the operation
|
|
*/
|
|
MMDEPLOY_API int mmdeploy_classifier_get_result(mmdeploy_value_t output, mm_class_t** results,
|
|
int** result_count);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // MMDEPLOY_CLASSIFIER_H
|