mmdeploy/demo/csrc/cpp/segmentor.cxx

48 lines
1.4 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "mmdeploy/segmentor.hpp"
#include <string>
#include <vector>
#include "utils/argparse.h"
#include "utils/mediaio.h"
#include "utils/visualize.h"
DEFINE_ARG_string(model, "Model path");
DEFINE_ARG_string(image, "Input image path");
DEFINE_string(device, "cpu", R"(Device name, e.g. "cpu", "cuda")");
DEFINE_string(output, "segmentor_output.jpg", "Output image path");
DEFINE_string(palette, "cityscapes",
R"(Path to palette data or name of predefined palettes: "cityscapes")");
int main(int argc, char* argv[]) {
if (!utils::ParseArguments(argc, argv)) {
return -1;
}
cv::Mat img = cv::imread(ARGS_image);
if (img.empty()) {
fprintf(stderr, "failed to load image: %s\n", ARGS_image.c_str());
return -1;
}
mmdeploy::Segmentor segmentor{mmdeploy::Model{ARGS_model}, mmdeploy::Device{FLAGS_device}};
// apply the detector, the result is an array-like class holding a reference to
// `mmdeploy_segmentation_t`, will be released automatically on destruction
mmdeploy::Segmentor::Result seg = segmentor.Apply(img);
// visualize
utils::Visualize v;
v.set_palette(utils::Palette::get(FLAGS_palette));
auto sess = v.get_session(img);
sess.add_mask(seg->height, seg->width, seg->classes, seg->mask, seg->score);
if (!FLAGS_output.empty()) {
cv::imwrite(FLAGS_output, sess.get());
}
return 0;
}