mmdeploy/demo/csrc/cpp/video_cls.cxx

89 lines
2.5 KiB
C++

#include <map>
#include <string>
#include "mmdeploy/video_recognizer.hpp"
#include "opencv2/videoio.hpp"
#include "utils/argparse.h"
void SampleFrames(const char* video_path, std::map<int, cv::Mat>& buffer,
std::vector<mmdeploy::Mat>& clips, int clip_len, int frame_interval = 1,
int num_clips = 1) {
cv::VideoCapture cap = cv::VideoCapture(video_path);
if (!cap.isOpened()) {
fprintf(stderr, "failed to load video: %s\n", video_path);
exit(1);
}
int num_frames = cap.get(cv::CAP_PROP_FRAME_COUNT);
printf("num_frames %d\n", num_frames);
int ori_clip_len = clip_len * frame_interval;
float avg_interval = (num_frames - ori_clip_len + 1.f) / num_clips;
std::vector<int> frame_inds;
for (int i = 0; i < num_clips; i++) {
int clip_offset = i * avg_interval + avg_interval / 2.0;
for (int j = 0; j < clip_len; j++) {
int ind = (j * frame_interval + clip_offset) % num_frames;
if (num_frames <= ori_clip_len - 1) {
ind = j % num_frames;
}
frame_inds.push_back(ind);
}
}
std::vector<int> unique_inds(frame_inds.begin(), frame_inds.end());
std::sort(unique_inds.begin(), unique_inds.end());
auto last = std::unique(unique_inds.begin(), unique_inds.end());
unique_inds.erase(last, unique_inds.end());
int ind = 0;
for (int i = 0; i < unique_inds.size(); i++) {
int tid = unique_inds[i];
cv::Mat frame;
while (ind < tid) {
cap.read(frame);
ind++;
}
cap.read(frame);
buffer[tid] = frame;
ind++;
}
clips.resize(frame_inds.size());
for (int i = 0; i < frame_inds.size(); i++) {
auto& img = buffer[frame_inds[i]];
clips[i] = img;
}
}
DEFINE_ARG_string(model, "Model path");
DEFINE_ARG_string(video, "Input video path");
DEFINE_string(device, "cpu", R"(Device name, e.g. "cpu", "cuda")");
int main(int argc, char* argv[]) {
if (!utils::ParseArguments(argc, argv)) {
return -1;
}
int clip_len = 1;
int frame_interval = 1;
int num_clips = 25;
std::map<int, cv::Mat> buffer;
std::vector<mmdeploy::Mat> clips;
mmdeploy::VideoSampleInfo clip_info = {clip_len, num_clips};
SampleFrames(ARGS_video.c_str(), buffer, clips, clip_len, frame_interval, num_clips);
mmdeploy::Model model(ARGS_model);
mmdeploy::VideoRecognizer recognizer(model, mmdeploy::Device{FLAGS_device});
auto res = recognizer.Apply(clips, clip_info);
for (const auto& cls : res) {
fprintf(stderr, "label: %d, score: %.4f\n", cls.label_id, cls.score);
}
return 0;
}