mmdeploy/tests/test_codebase/test_mmedit/test_super_resolution.py
q.yao d8e4a78636
[Improvement] Better unit test. (#1619)
* update test for mmcls and mmdet

* update det3d mmedit mmocr mmpose mmrotate

* update mmseg

* bug fixing

* refactor ops

* rename variable

* remove comment
2023-02-08 11:30:59 +08:00

132 lines
4.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
import tempfile
import mmcv
import numpy as np
import pytest
import torch
from mmdeploy.apis import build_task_processor
from mmdeploy.utils import load_config
from mmdeploy.utils.test import SwitchBackendWrapper
@pytest.fixture(scope='module')
def model_cfg():
cfg = 'tests/test_codebase/test_mmedit/data/model.py'
return load_config(cfg)[0]
@pytest.fixture(scope='module')
def deploy_cfg():
return mmcv.Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmedit', task='SuperResolution'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['output'])))
@pytest.fixture(scope='module')
def input_img():
return np.random.rand(32, 32, 3)
@pytest.fixture(scope='module')
def model_input(input_img):
return {'lq': input_img}
@pytest.fixture(scope='module')
def task_processor(model_cfg, deploy_cfg):
return build_task_processor(model_cfg, deploy_cfg, 'cpu')
def test_init_pytorch_model(task_processor):
torch_model = task_processor.init_pytorch_model(None)
assert torch_model is not None
@pytest.fixture(scope='module')
def backend_model(task_processor):
from mmdeploy.backend.onnxruntime import ORTWrapper
with SwitchBackendWrapper(ORTWrapper) as wrapper:
wrapper.set(outputs={
'output': torch.rand(3, 50, 50),
})
yield task_processor.init_backend_model([''])
def test_init_backend_model(backend_model):
assert backend_model is not None
def test_create_input(task_processor, input_img):
inputs = task_processor.create_input(
input_img, img_shape=input_img.shape[:2])
assert inputs is not None
def test_visualize(backend_model, task_processor, model_input, input_img):
result = task_processor.run_inference(backend_model, model_input)
with tempfile.TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
task_processor.visualize(backend_model, input_img, result[0], filename,
'onnxruntime')
assert os.path.exists(filename)
def test_run_inference(backend_model, task_processor, model_input):
results = task_processor.run_inference(backend_model, model_input)
assert results is not None
def test_get_tensor_from_input(task_processor, model_input):
assert type(task_processor.get_tensor_from_input(model_input)) is not dict
def test_get_partition_cfg(task_processor):
with pytest.raises(NotImplementedError):
task_processor.get_partition_cfg(None)
def test_build_dataset(task_processor):
data = dict(
test={
'type': 'SRFolderDataset',
'lq_folder': 'tests/test_codebase/test_mmedit/data/imgs',
'gt_folder': 'tests/test_codebase/test_mmedit/data/imgs',
'scale': 1,
'filename_tmpl': '{}',
'pipeline': [
{
'type': 'LoadImageFromFile'
},
]
})
dataset_cfg = mmcv.Config(dict(data=data))
dataset = task_processor.build_dataset(
dataset_cfg=dataset_cfg, dataset_type='test')
assert dataset is not None, 'Failed to build dataset'
dataloader = task_processor.build_dataloader(dataset, 1, 1)
assert dataloader is not None, 'Failed to build dataloader'
def test_single_gpu_test(backend_model, model_cfg, task_processor):
from mmcv.parallel import MMDataParallel
dataset = task_processor.build_dataset(model_cfg, dataset_type='test')
assert dataset is not None, 'Failed to build dataset'
dataloader = task_processor.build_dataloader(dataset, 1, 1)
assert dataloader is not None, 'Failed to build dataloader'
backend_model = MMDataParallel(backend_model, device_ids=[0])
outputs = task_processor.single_gpu_test(backend_model, dataloader)
assert outputs is not None, 'Failed to test model'