mmdeploy/tests/test_codebase/test_mmocr/test_text_recognition.py

117 lines
3.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory
import mmcv
import numpy as np
import pytest
import torch
from torch.utils.data import DataLoader
import mmdeploy.backend.onnxruntime as ort_apis
from mmdeploy.apis import build_task_processor
from mmdeploy.utils import load_config
from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper
model_cfg_path = 'tests/test_codebase/test_mmocr/data/crnn.py'
model_cfg = load_config(model_cfg_path)[0]
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmocr', task='TextRecognition'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['output'])))
onnx_file = NamedTemporaryFile(suffix='.onnx').name
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
img_shape = (32, 32)
img = np.random.rand(*img_shape, 3).astype(np.uint8)
def test_init_pytorch_model():
from mmocr.models.textrecog.recognizer import BaseRecognizer
model = task_processor.init_pytorch_model(None)
assert isinstance(model, BaseRecognizer)
@pytest.fixture
def backend_model():
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(outputs={
'output': torch.rand(1, 9, 37),
})
yield task_processor.init_backend_model([''])
wrapper.recover()
def test_init_backend_model(backend_model):
assert isinstance(backend_model, torch.nn.Module)
def test_create_input():
inputs = task_processor.create_input(img, input_shape=img_shape)
assert isinstance(inputs, tuple) and len(inputs) == 2
def test_run_inference(backend_model):
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
results = task_processor.run_inference(backend_model, input_dict)
assert results is not None
def test_visualize(backend_model):
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
results = task_processor.run_inference(backend_model, input_dict)
with TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
task_processor.visualize(backend_model, img, results[0], filename, '')
assert os.path.exists(filename)
def test_get_tensort_from_input():
input_data = {'img': [torch.ones(3, 4, 5)]}
inputs = task_processor.get_tensor_from_input(input_data)
assert torch.equal(inputs, torch.ones(3, 4, 5))
def test_get_partition_cfg():
try:
_ = task_processor.get_partition_cfg(partition_type='')
except NotImplementedError:
pass
def test_build_dataset_and_dataloader():
from torch.utils.data import Dataset, DataLoader
dataset = task_processor.build_dataset(
dataset_cfg=model_cfg, dataset_type='test')
assert isinstance(dataset, Dataset), 'Failed to build dataset'
dataloader = task_processor.build_dataloader(dataset, 1, 1)
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
def test_single_gpu_test_and_evaluate():
from mmcv.parallel import MMDataParallel
# Prepare dataloader
dataloader = DataLoader([])
# Prepare dummy model
model = DummyModel(outputs=[torch.rand([1, 1, *img_shape])])
model = MMDataParallel(model, device_ids=[0])
assert model is not None
# Run test
outputs = task_processor.single_gpu_test(model, dataloader)
assert outputs is not None
task_processor.evaluate_outputs(model_cfg, outputs, [])