mmdeploy/demo/csrc/c/det_pose.cpp

186 lines
5.6 KiB
C++

#include "mmdeploy/archive/json_archive.h"
#include "mmdeploy/core/logger.h"
#include "mmdeploy/core/mat.h"
#include "mmdeploy/core/module.h"
#include "mmdeploy/core/registry.h"
#include "mmdeploy/core/utils/formatter.h"
#include "mmdeploy/core/value.h"
#include "mmdeploy/detector.h"
#include "mmdeploy/experimental/module_adapter.h"
#include "mmdeploy/pipeline.h"
#include "mmdeploy/pose_detector.h"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
const auto config_json = R"(
{
"type": "Pipeline",
"input": "img",
"output": ["human", "keypoints"],
"tasks": [
{
"type": "Inference",
"input": "img",
"output": "dets",
"params": { "model": "TBD" }
},
{
"type": "Task",
"module": "FilterBbox",
"input": "dets",
"output": "human"
},
{
"type": "Pipeline",
"input": ["bboxes=*human", "imgs=+img"],
"tasks": [
{
"type": "Task",
"module": "AddBboxField",
"input": ["imgs", "bboxes"],
"output": "imgs_with_bboxes"
},
{
"type": "Inference",
"input": "imgs_with_bboxes",
"output": "keypoints",
"params": { "model": "TBD" }
}
],
"output": "*keypoints"
}
]
}
)"_json;
using namespace mmdeploy;
class AddBboxField {
public:
Result<Value> operator()(const Value& img, const Value& dets) {
auto _img = img["ori_img"].get<framework::Mat>();
cv::Rect rect(0, 0, _img.width(), _img.height());
if (dets.is_object() && dets.contains("bbox")) {
auto _box = from_value<std::vector<float>>(dets["bbox"]);
rect = cv::Rect(cv::Rect2f(cv::Point2f(_box[0], _box[1]), cv::Point2f(_box[2], _box[3])));
}
return Value{
{"ori_img", _img}, {"bbox", {rect.x, rect.y, rect.width, rect.height}}, {"rotation", 0.f}};
}
};
MMDEPLOY_REGISTER_FACTORY_FUNC(Module, (AddBboxField, 0),
[](const Value&) { return CreateTask(AddBboxField{}); });
Result<Value> FilterBbox(const Value& dets) {
Value::Array rets;
for (const auto& det : dets) {
if (det["label_id"].get<int>() == 0 && det["score"].get<float>() >= 0.3) {
rets.push_back(det);
}
}
return rets;
}
MMDEPLOY_REGISTER_FACTORY_FUNC(Module, (FilterBbox, 0),
[](const Value&) { return CreateTask(FilterBbox); });
static std::vector<std::pair<int, int>> skeleton{
{15, 13}, {13, 11}, {16, 14}, {14, 12}, {11, 12}, {5, 11}, {6, 12}, {5, 6}, {5, 7}, {6, 8},
{7, 9}, {8, 10}, {1, 2}, {0, 1}, {0, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}};
int main(int argc, char* argv[]) {
if (argc != 5) {
MMDEPLOY_INFO("usage: det_pose device det_model pose_model image");
return 0;
}
const auto device_name = argv[1];
const auto det_model_path = argv[2];
const auto pose_model_path = argv[3];
const auto image_path = argv[4];
auto config = from_json<Value>(config_json);
config["tasks"][0]["params"]["model"] = det_model_path;
config["tasks"][2]["tasks"][1]["params"]["model"] = pose_model_path;
mmdeploy_context_t context{};
mmdeploy_context_create(&context);
auto thread_pool = mmdeploy_executor_create_thread_pool(4);
auto single_thread = mmdeploy_executor_create_thread();
mmdeploy_context_add(context, MMDEPLOY_TYPE_SCHEDULER, "preprocess", thread_pool);
mmdeploy_context_add(context, MMDEPLOY_TYPE_SCHEDULER, "net", single_thread);
mmdeploy_context_add(context, MMDEPLOY_TYPE_SCHEDULER, "postprocess", thread_pool);
mmdeploy_device_t device{};
mmdeploy_device_create(device_name, 0, &device);
mmdeploy_context_add(context, MMDEPLOY_TYPE_DEVICE, nullptr, device);
mmdeploy_pipeline_t pipeline{};
if (auto ec = mmdeploy_pipeline_create_v3((mmdeploy_value_t)&config, context, &pipeline)) {
MMDEPLOY_ERROR("failed to create pipeline: {}", ec);
return -1;
}
cv::Mat mat = cv::imread(image_path);
if (!mat.data) {
MMDEPLOY_ERROR("invalid image path: {}", image_path);
}
framework::Mat img(mat.rows, mat.cols, PixelFormat::kBGR, DataType::kINT8, mat.data,
framework::Device(0));
Value input{{{{"ori_img", img}}}};
mmdeploy_value_t tmp{};
mmdeploy_pipeline_apply(pipeline, (mmdeploy_value_t)&input, &tmp);
mmdeploy_detection_t* dets{};
int* det_count{};
mmdeploy_detector_get_result(tmp, &dets, &det_count);
auto output = std::move(*(Value*)tmp);
mmdeploy_value_destroy(tmp);
// result of second output
auto& pose = output[1];
mmdeploy_pose_detection_t* kps{};
mmdeploy_pose_detector_get_result((mmdeploy_value_t)&pose, &kps);
MMDEPLOY_INFO("{}", *det_count);
for (int i = 0; i < *det_count; ++i) {
if (dets[i].label_id != 0 || dets[i].score < 0.3) {
continue;
}
const auto& bbox = dets[i].bbox;
cv::Point p1(bbox.left, bbox.top);
cv::Point p2(bbox.right, bbox.bottom);
cv::rectangle(mat, p1, p2, cv::Scalar(0, 255, 0));
for (int j = 0; j < kps[i].length; ++j) {
cv::Point p(kps[i].point[j].x, kps[i].point[j].y);
cv::circle(mat, p, 1, cv::Scalar(0, 255, 255), 2, cv::LINE_AA);
}
for (int j = 0; j < skeleton.size(); ++j) {
int u = skeleton[j].first;
cv::Point p_u(kps[i].point[u].x, kps[i].point[u].y);
int v = skeleton[j].second;
cv::Point p_v(kps[i].point[v].x, kps[i].point[v].y);
cv::line(mat, p_u, p_v, cv::Scalar(0, 255, 255), 1, cv::LINE_AA);
}
}
mmdeploy_pose_detector_release_result(kps, pose.size());
cv::imwrite("output_det_pose.jpg", mat);
mmdeploy_pipeline_destroy(pipeline);
mmdeploy_context_destroy(context);
mmdeploy_scheduler_destroy(single_thread);
mmdeploy_scheduler_destroy(thread_pool);
return 0;
}