162 lines
7.0 KiB
Markdown
162 lines
7.0 KiB
Markdown
# MMPose Deployment
|
|
|
|
- [MMPose Deployment](#mmpose-deployment)
|
|
- [Installation](#installation)
|
|
- [Install mmpose](#install-mmpose)
|
|
- [Install mmdeploy](#install-mmdeploy)
|
|
- [Convert model](#convert-model)
|
|
- [Model specification](#model-specification)
|
|
- [Model inference](#model-inference)
|
|
- [Backend model inference](#backend-model-inference)
|
|
- [SDK model inference](#sdk-model-inference)
|
|
- [Supported models](#supported-models)
|
|
|
|
______________________________________________________________________
|
|
|
|
[MMPose](https://github.com/open-mmlab/mmpose/tree/1.x) aka `mmpose` is an open-source toolbox for pose estimation based on PyTorch. It is a part of the [OpenMMLab](https://openmmlab.com/) project.
|
|
|
|
## Installation
|
|
|
|
### Install mmpose
|
|
|
|
Please follow the [best practice](https://mmpose.readthedocs.io/en/1.x/installation.html#best-practices) to install mmpose.
|
|
|
|
### Install mmdeploy
|
|
|
|
There are several methods to install mmdeploy, among which you can choose an appropriate one according to your target platform and device.
|
|
|
|
**Method I:** Install precompiled package
|
|
|
|
You can refer to [get_started](https://mmdeploy.readthedocs.io/en/latest/get_started.html#installation)
|
|
|
|
**Method II:** Build using scripts
|
|
|
|
If your target platform is **Ubuntu 18.04 or later version**, we encourage you to run
|
|
[scripts](../01-how-to-build/build_from_script.md). For example, the following commands install mmdeploy as well as inference engine - `ONNX Runtime`.
|
|
|
|
```shell
|
|
git clone --recursive -b main https://github.com/open-mmlab/mmdeploy.git
|
|
cd mmdeploy
|
|
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
|
|
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
|
|
export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH
|
|
```
|
|
|
|
**Method III:** Build from source
|
|
|
|
If neither **I** nor **II** meets your requirements, [building mmdeploy from source](../01-how-to-build/build_from_source.md) is the last option.
|
|
|
|
## Convert model
|
|
|
|
You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/main/tools/deploy.py) to convert mmpose models to the specified backend models. Its detailed usage can be learned from [here](https://github.com/open-mmlab/mmdeploy/tree/main/docs/en/02-how-to-run/convert_model.md#usage).
|
|
|
|
The command below shows an example about converting `hrnet` model to onnx model that can be inferred by ONNX Runtime.
|
|
|
|
```shell
|
|
cd mmdeploy
|
|
# download hrnet model from mmpose model zoo
|
|
mim download mmpose --config td-hm_hrnet-w32_8xb64-210e_coco-256x192 --dest .
|
|
# convert mmdet model to onnxruntime model with static shape
|
|
python tools/deploy.py \
|
|
configs/mmpose/pose-detection_onnxruntime_static.py \
|
|
td-hm_hrnet-w32_8xb64-210e_coco-256x192.py \
|
|
hrnet_w32_coco_256x192-c78dce93_20200708.pth \
|
|
demo/resources/human-pose.jpg \
|
|
--work-dir mmdeploy_models/mmpose/ort \
|
|
--device cpu \
|
|
--show
|
|
```
|
|
|
|
It is crucial to specify the correct deployment config during model conversion. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmpose) of all supported backends for mmpose. The config filename pattern is:
|
|
|
|
```
|
|
pose-detection_{backend}-{precision}_{static | dynamic}_{shape}.py
|
|
```
|
|
|
|
- **{backend}:** inference backend, such as onnxruntime, tensorrt, pplnn, ncnn, openvino, coreml etc.
|
|
- **{precision}:** fp16, int8. When it's empty, it means fp32
|
|
- **{static | dynamic}:** static shape or dynamic shape
|
|
- **{shape}:** input shape or shape range of a model
|
|
|
|
Therefore, in the above example, you can also convert `hrnet` to other backend models by changing the deployment config file `pose-detection_onnxruntime_static.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmpose), e.g., converting to tensorrt model by `pose-detection_tensorrt_static-256x192.py`.
|
|
|
|
```{tip}
|
|
When converting mmpose models to tensorrt models, --device should be set to "cuda"
|
|
```
|
|
|
|
## Model specification
|
|
|
|
Before moving on to model inference chapter, let's know more about the converted model structure which is very important for model inference.
|
|
|
|
The converted model locates in the working directory like `mmdeploy_models/mmpose/ort` in the previous example. It includes:
|
|
|
|
```
|
|
mmdeploy_models/mmpose/ort
|
|
├── deploy.json
|
|
├── detail.json
|
|
├── end2end.onnx
|
|
└── pipeline.json
|
|
```
|
|
|
|
in which,
|
|
|
|
- **end2end.onnx**: backend model which can be inferred by ONNX Runtime
|
|
- \***.json**: the necessary information for mmdeploy SDK
|
|
|
|
The whole package **mmdeploy_models/mmpose/ort** is defined as **mmdeploy SDK model**, i.e., **mmdeploy SDK model** includes both backend model and inference meta information.
|
|
|
|
## Model inference
|
|
|
|
### Backend model inference
|
|
|
|
Take the previous converted `end2end.onnx` model as an example, you can use the following code to inference the model and visualize the results.
|
|
|
|
```python
|
|
from mmdeploy.apis.utils import build_task_processor
|
|
from mmdeploy.utils import get_input_shape, load_config
|
|
import torch
|
|
|
|
deploy_cfg = 'configs/mmpose/pose-detection_onnxruntime_static.py'
|
|
model_cfg = 'td-hm_hrnet-w32_8xb64-210e_coco-256x192.py'
|
|
device = 'cpu'
|
|
backend_model = ['./mmdeploy_models/mmpose/ort/end2end.onnx']
|
|
image = './demo/resources/human-pose.jpg'
|
|
|
|
# read deploy_cfg and model_cfg
|
|
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
|
|
|
|
# build task and backend model
|
|
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
|
|
model = task_processor.build_backend_model(backend_model)
|
|
|
|
# process input image
|
|
input_shape = get_input_shape(deploy_cfg)
|
|
model_inputs, _ = task_processor.create_input(image, input_shape)
|
|
|
|
# do model inference
|
|
with torch.no_grad():
|
|
result = model.test_step(model_inputs)
|
|
|
|
# visualize results
|
|
task_processor.visualize(
|
|
image=image,
|
|
model=model,
|
|
result=result[0],
|
|
window_name='visualize',
|
|
output_file='output_pose.png')
|
|
```
|
|
|
|
### SDK model inference
|
|
|
|
TODO
|
|
|
|
## Supported models
|
|
|
|
| Model | Task | ONNX Runtime | TensorRT | ncnn | PPLNN | OpenVINO |
|
|
| :----------------------------------------------------------------------------------------------------- | :------------ | :----------: | :------: | :--: | :---: | :------: |
|
|
| [HRNet](https://mmpose.readthedocs.io/en/1.x/model_zoo_papers/backbones.html#hrnet-cvpr-2019) | PoseDetection | Y | Y | Y | N | Y |
|
|
| [MSPN](https://mmpose.readthedocs.io/en/1.x/model_zoo_papers/backbones.html#mspn-arxiv-2019) | PoseDetection | Y | Y | Y | N | Y |
|
|
| [LiteHRNet](https://mmpose.readthedocs.io/en/1.x/model_zoo_papers/backbones.html#litehrnet-cvpr-2021) | PoseDetection | Y | Y | Y | N | Y |
|
|
| [Hourglass](https://mmpose.readthedocs.io/en/1.x/model_zoo_papers/algorithms.html#hourglass-eccv-2016) | PoseDetection | Y | Y | Y | N | Y |
|
|
| [SimCC](https://mmpose.readthedocs.io/en/1.x/model_zoo_papers/algorithms.html#simcc-eccv-2022) | PoseDetection | Y | Y | Y | N | N |
|