mmdeploy/docs/en/ops/tensorrt.md
RunningLeon 4d8ea40f55
Sync v0.7.0 to dev-1.x (#907)
* make -install -> make install (#621)

change `make -install` to `make install`

https://github.com/open-mmlab/mmdeploy/issues/618

* [Fix] fix csharp api detector release result (#620)

* fix csharp api detector release result

* fix wrong count arg of xxx_release_result in c# api

* [Enhancement] Support two-stage rotated detector TensorRT. (#530)

* upload

* add fake_multiclass_nms_rotated

* delete unused code

* align with pytorch

* Update delta_midpointoffset_rbbox_coder.py

* add trt rotated roi align

* add index feature in nms

* not good

* fix index

* add ut

* add benchmark

* move to csrc/mmdeploy

* update unit test

Co-authored-by: zytx121 <592267829@qq.com>

* Reduce mmcls version dependency (#635)

* fix shufflenetv2 with trt (#645)

* fix shufflenetv2 and pspnet

* fix ci

* remove print

* ' -> " (#654)

If there is a variable in the string, single quotes will ignored it, while double quotes will bring the variable into the string after parsing

* ' -> " (#655)

same with https://github.com/open-mmlab/mmdeploy/pull/654

* Support deployment of Segmenter (#587)

* support segmentor with ncnn

* update regression yml

* replace chunk with split to support ts

* update regression yml

* update docs

* fix segmenter ncnn inference failure brought by #477

* add test

* fix test for ncnn and trt

* fix lint

* export nn.linear to Gemm op in onnx for ncnn

* fix ci

* simplify `Expand` (#617)

* Fix typo (#625)

* Add make install in en docs

* Add make install in zh docs

* Fix typo

* Merge and add windows build

Co-authored-by: tripleMu <865626@163.com>

* [Enhancement] Fix ncnn unittest (#626)

* optmize-csp-darknet

* replace floordiv to torch.div

* update csp_darknet default implement

* fix test

* [Enhancement] TensorRT Anchor generator plugin (#646)

* custom trt anchor generator

* add ut

* add docstring, update doc

* Add partition doc and sample code (#599)

* update torch2onnx tool to support onnx partition

* add model partition of yolov3

* add cn doc

* update torch2onnx tool to support onnx partition

* add model partition of yolov3

* add cn doc

* add to index.rst

* resolve comment

* resolve comments

* fix lint

* change caption level in docs

* update docs (#624)

* Add java apis and demos (#563)

* add java classifier detector

* add segmentor

* fix lint

* add ImageRestorer java apis and demo

* remove useless count parameter for Segmentor and Restorer, add PoseDetector

* add RotatedDetection java api and demo

* add Ocr java demo and apis

* remove mmrotate ncnn java api and demo

* fix lint

* sync java api folder after rebase to master

* fix include

* remove record

* fix java apis dir path in cmake

* add java demo readme

* fix lint mdformat

* add test javaapi ci

* fix lint

* fix flake8

* fix test javaapi ci

* refactor readme.md

* fix install opencv for ci

* fix install opencv : add permission

* add all codebases and mmcv install

* add torch

* install mmdeploy

* fix image path

* fix picture path

* fix import ncnn

* fix import ncnn

* add submodule of pybind

* fix pybind submodule

* change download to git clone for submodule

* fix ncnn dir

* fix README error

* simplify the github ci

* fix ci

* fix yapf

* add JNI as required

* fix Capitalize

* fix Capitalize

* fix copyright

* ignore .class changed

* add OpenJDK installation docs

* install target of javaapi

* simplify ci

* add jar

* fix ci

* fix ci

* fix test java command

* debugging what failed

* debugging what failed

* debugging what failed

* add java version info

* install openjdk

* add java env var

* fix export

* fix export

* fix export

* fix export

* fix picture path

* fix picture path

* fix file name

* fix file name

* fix README

* remove java_api strategy

* fix python version

* format task name

* move args position

* extract common utils code

* show image class result

* add detector result

* segmentation result format

* add ImageRestorer result

* add PoseDetection java result format

* fix ci

* stage ocr

* add visualize

* move utils

* fix lint

* fix ocr bugs

* fix ci demo

* fix java classpath for ci

* fix popd

* fix ocr demo text garbled

* fix ci

* fix ci

* fix ci

* fix path of utils ci

* update the circleci config file by adding workflows both for linux, windows and linux-gpu (#368)

* update circleci by adding more workflows

* fix test workflow failure on windows platform

* fix docker exec command for SDK unittests

* Fixed tensorrt plugin not found in Windows (#672)

* update introduction.png (#674)

* [Enhancement] Add fuse select assign pass (#589)

* Add fuse select assign pass

* move code to csrc

* add config flag

* remove bool cast

* fix export sdk info of input shape (#667)

* Update get_started.md (#675)

Fix backend model assignment

* Update get_started.md (#676)

Fix backend model assignment

* [Fix] fix clang build (#677)

* fix clang build

* fix ndk build

* fix ndk build

* switch to `std::filesystem` for clang-7 and later

* Deploy the Swin Transformer on TensorRT. (#652)

* resolve conflicts

* update ut and docs

* fix ut

* refine docstring

* add comments and refine UT

* resolve comments

* resolve comments

* update doc

* add roll export

* check backend

* update regression test

* bump version to 0.6.0 (#680)

* bump vertion to 0.6.0

* update version

* pass img_metas while exporting to onnx (#681)

* pass img_metas while exporting to onnx

* remove try-catch in tools for beter debugging

* use get

* fix typo

* [Fix] fix ssd ncnn ut (#692)

* fix ssd ncnn ut

* fix yapf

* fix passing img_metas to pytorch2onnx for mmedit (#700)

* fix passing img_metas for mmdet3d (#707)

* [Fix] Fix android build (#698)

* fix android build

* fix cmake

* fix url link

* fix wrong exit code in pipeline_manager (#715)

* fix exit

* change to general exit errorcode=1

* fix passing wrong backend type (#719)

* Rename onnx2ncnn to mmdeploy_onnx2ncnn (#694)

* improvement(tools/onnx2ncnn.py): rename to mmdeploy_onnx2ncnn

* format(tools/deploy.py): clean code

* fix(init_plugins.py): improve if condition

* fix(CI): update target

* fix(test_onnx2ncnn.py): update desc

* Update init_plugins.py

* [Fix] Fix mmdet ort static shape bug (#687)

* fix shape

* add device

* fix yapf

* fix rewriter for transforms

* reverse image shape

* fix ut of distance2bbox

* fix rewriter name

* fix c4 for torchscript (#724)

* [Enhancement] Standardize C API (#634)

* unify C API naming

* fix demo and move apis/c/* -> apis/c/mmdeploy/*

* fix lint

* fix C# project

* fix Java API

* [Enhancement] Support Slide Vertex TRT (#650)

* reorgnize mmrotate

* fix

* add hbb2obb

* add ut

* fix rotated nms

* update docs

* update benchmark

* update test

* remove ort regression test, remove comment

* Fix get-started rendering issues in readthedocs (#740)

* fix mermaid markdown rendering issue in readthedocs

* fix error in C++ example

* fix error in c++ example in zh_cn get_started doc

* [Fix] set default topk for dump info (#702)

* set default topk for dump info

* remove redundant docstrings

* add ci densenet

* fix classification warnings

* fix mmcls version

* fix logger.warnings

* add version control (#754)

* fix satrn for ORT (#753)

* fix satrn for ORT

* move rewrite into pytorch

* Add inference latency test tool (#665)

* add profile tool

* remove print envs in profile tool

* set cudnn_benchmark to True

* add doc

* update tests

* fix typo

* support test with images from a directory

* update doc

* resolve comments

* [Enhancement] Add CSE ONNX pass (#647)

* Add fuse select assign pass

* move code to csrc

* add config flag

* Add fuse select assign pass

* Add CSE for ONNX

* remove useless code

* Test robot

Just test robot

* Update README.md

Revert

* [Fix] fix yolox point_generator (#758)

* fix yolox point_generator

* add a UT

* resolve comments

* fix comment lines

* limit markdown version (#773)

* [Enhancement] Better index put ONNX export. (#704)

* Add rewriter for tensor setitem

* add version check

* Upgrade Dockerfile to use TensorRT==8.2.4.2 (#706)

* Upgrade TensorRT to 8.2.4.2

* upgrade pytorch&mmcv in CPU Dockerfile

* Delete redundant port example in Docker

* change 160x160-608x608 to 64x64-608x608 for yolov3

* [Fix] reduce log verbosity & improve error reporting (#755)

* reduce log verbosity & improve error reporting

* improve error reporting

* [Enhancement] Support latest ppl.nn & ppl.cv (#564)

* support latest ppl.nn

* fix pplnn for model convertor

* fix lint

* update memory policy

* import algo from buffer

* update ppl.cv

* use `ppl.cv==0.7.0`

* document supported ppl.nn version

* skip pplnn dependency when building shared libs

* [Fix][P0] Fix for torch1.12 (#751)

* fix for torch1.12

* add comment

* fix check env (#785)

* [Fix] fix cascade mask rcnn (#787)

* fix cascade mask rcnn

* fix lint

* add regression

* [Feature] Support RoITransRoIHead (#713)

* [Feature] Support RoITransRoIHead

* Add docs

* Add mmrotate models regression test

* Add a draft for test code

* change the argument name

* fix test code

* fix minor change for not class agnostic case

* fix sample for test code

* fix sample for test code

* Add mmrotate in requirements

* Revert "Add mmrotate in requirements"

This reverts commit 043490075e6dbe4a8fb98e94b2b583b91fc5038d.

* [Fix] fix triu (#792)

* fix triu

* triu -> triu_default

* [Enhancement] Install Optimizer by setuptools (#690)

* Add fuse select assign pass

* move code to csrc

* add config flag

* Add fuse select assign pass

* Add CSE for ONNX

* remove useless code

* Install optimizer by setup tools

* fix comment

* [Feature] support MMRotate model with le135 (#788)

* support MMRotate model with le135

* cse before fuse select assign

* remove unused import

* [Fix] Support macOS build (#762)

* fix macOS build

* fix missing

* add option to build & install examples (#822)

* [Fix] Fix setup on non-linux-x64 (#811)

* fix setup

* replace long to int64_t

* [Feature] support build single sdk library (#806)

* build single lib for c api

* update csharp doc & project

* update test build

* fix test build

* fix

* update document for building android sdk (#817)

Co-authored-by: dwSun <dwsunny@icloud.com>

* [Enhancement] support kwargs in SDK python bindings (#794)

* support-kwargs

* make '__call__' as single image inference and add 'batch' API to deal with batch images inference

* fix linting error and typo

* fix lint

* improvement(sdk): add sdk code coverage (#808)

* feat(doc): add CI

* CI(sdk): add sdk coverage

* style(test): code format

* fix(CI): update coverage.info path

* improvement(CI): use internal image

* improvement(CI): push coverage info once

* [Feature] Add C++ API for SDK (#831)

* add C++ API

* unify result type & add examples

* minor fix

* install cxx API headers

* fix Mat, add more examples

* fix monolithic build & fix lint

* install examples correctly

* fix lint

* feat(tools/deploy.py): support snpe (#789)

* fix(tools/deploy.py): support snpe

* improvement(backend/snpe): review advices

* docs(backend/snpe): update build

* docs(backend/snpe): server support specify port

* docs(backend/snpe): update path

* fix(backend/snpe): time counter missing argument

* docs(backend/snpe): add missing argument

* docs(backend/snpe): update download and using

* improvement(snpe_net.cpp): load model with modeldata

* Support setup on environment with no PyTorch (#843)

* support test with multi batch (#829)

* support test with multi batch

* resolve comment

* import algorithm from buffer (#793)

* [Enhancement] build sdk python api in standard-alone manner (#810)

* build sdk python api in standard-alone manner

* enable MMDEPLOY_BUILD_SDK_MONOLITHIC and MMDEPLOY_BUILD_EXAMPLES in prebuild config

* link mmdeploy to python target when monolithic option is on

* checkin README to describe precompiled package build procedure

* use packaging.version.parse(python_version) instead of list(python_version)

* fix according to review results

* rebase master

* rollback cmake.in and apis/python/CMakeLists.txt

* reorganize files in install/example

* let cmake detect visual studio instead of specifying 2019

* rename whl name of precompiled package

* fix according to review results

* Fix SDK backend (#844)

* fix mmpose python api (#852)

* add prebuild package usage docs on windows (#816)

* add prebuild package usage docs on windows

* fix lint

* update

* try fix lint

* add en docs

* update

* update

* udpate faq

* fix typo (#862)

* [Enhancement] Improve get_started documents and bump version to 0.7.0 (#813)

* simplify commands in get_started

* add installation commands for Windows

* fix typo

* limit markdown and sphinx_markdown_tables version

* adopt html <details open> tag

* bump mmdeploy version

* bump mmdeploy version

* update get_started

* update get_started

* use python3.8 instead of python3.7

* remove duplicate section

* resolve issue #856

* update according to review results

* add reference to prebuilt_package_windows.md

* fix error when build sdk demos

* fix mmcls

Co-authored-by: Ryan_Huang <44900829+DrRyanHuang@users.noreply.github.com>
Co-authored-by: Chen Xin <xinchen.tju@gmail.com>
Co-authored-by: q.yao <yaoqian@sensetime.com>
Co-authored-by: zytx121 <592267829@qq.com>
Co-authored-by: Li Zhang <lzhang329@gmail.com>
Co-authored-by: tripleMu <gpu@163.com>
Co-authored-by: tripleMu <865626@163.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: Bryan Glen Suello <11388006+bgsuello@users.noreply.github.com>
Co-authored-by: zambranohally <63218980+zambranohally@users.noreply.github.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: tpoisonooo <khj.application@aliyun.com>
Co-authored-by: Hakjin Lee <nijkah@gmail.com>
Co-authored-by: 孙德伟 <5899962+dwSun@users.noreply.github.com>
Co-authored-by: dwSun <dwsunny@icloud.com>
Co-authored-by: Chen Xin <irexyc@gmail.com>
2022-08-19 09:30:13 +08:00

19 KiB

TensorRT Ops

TRTBatchedNMS

Description

Batched NMS with a fixed number of output bounding boxes.

Parameters

Type Parameter Description
int background_label_id The label ID for the background class. If there is no background class, set it to -1.
int num_classes The number of classes.
int topK The number of bounding boxes to be fed into the NMS step.
int keepTopK The number of total bounding boxes to be kept per-image after the NMS step. Should be less than or equal to the topK value.
float scoreThreshold The scalar threshold for score (low scoring boxes are removed).
float iouThreshold The scalar threshold for IoU (new boxes that have high IoU overlap with previously selected boxes are removed).
int isNormalized Set to false if the box coordinates are not normalized, meaning they are not in the range [0,1]. Defaults to true.
int clipBoxes Forcibly restrict bounding boxes to the normalized range [0,1]. Only applicable if isNormalized is also true. Defaults to true.

Inputs

inputs[0]: T
boxes; 4-D tensor of shape (N, num_boxes, num_classes, 4), where N is the batch size; `num_boxes` is the number of boxes; `num_classes` is the number of classes, which could be 1 if the boxes are shared between all classes.
inputs[1]: T
scores; 4-D tensor of shape (N, num_boxes, 1, num_classes).

Outputs

outputs[0]: T
dets; 3-D tensor of shape (N, valid_num_boxes, 5), `valid_num_boxes` is the number of boxes after NMS. For each row `dets[i,j,:] = [x0, y0, x1, y1, score]`
outputs[1]: tensor(int32, Linear)
labels; 2-D tensor of shape (N, valid_num_boxes).

Type Constraints

  • T:tensor(float32, Linear)

grid_sampler

Description

Perform sample from input with pixel locations from grid.

Parameters

Type Parameter Description
int interpolation_mode Interpolation mode to calculate output values. (0: bilinear , 1: nearest)
int padding_mode Padding mode for outside grid values. (0: zeros, 1: border, 2: reflection)
int align_corners If align_corners=1, the extrema (-1 and 1) are considered as referring to the center points of the input's corner pixels. If align_corners=0, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic.

Inputs

inputs[0]: T
Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
inputs[1]: T
Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW are the height and width of offset and output.

Outputs

outputs[0]: T
Output feature; 4-D tensor of shape (N, C, outH, outW).

Type Constraints

  • T:tensor(float32, Linear)

MMCVInstanceNormalization

Description

Carry out instance normalization as described in the paper https://arxiv.org/abs/1607.08022.

y = scale * (x - mean) / sqrt(variance + epsilon) + B, where mean and variance are computed per instance per channel.

Parameters

Type Parameter Description
float epsilon The epsilon value to use to avoid division by zero. Default is 1e-05

Inputs

input: T
Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.
scale: T
The input 1-dimensional scale tensor of size C.
B: T
The input 1-dimensional bias tensor of size C.

Outputs

output: T
The output tensor of the same shape as input.

Type Constraints

  • T:tensor(float32, Linear)

MMCVModulatedDeformConv2d

Description

Perform Modulated Deformable Convolution on input feature. Read Deformable ConvNets v2: More Deformable, Better Results for detail.

Parameters

Type Parameter Description
list of ints stride The stride of the convolving kernel. (sH, sW)
list of ints padding Paddings on both sides of the input. (padH, padW)
list of ints dilation The spacing between kernel elements. (dH, dW)
int deformable_group Groups of deformable offset.
int group Split input into groups. input_channel should be divisible by the number of groups.

Inputs

inputs[0]: T
Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.
inputs[1]: T
Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.
inputs[2]: T
Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.
inputs[3]: T
Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
inputs[4]: T, optional
Input weight; 1-D tensor of shape (output_channel).

Outputs

outputs[0]: T
Output feature; 4-D tensor of shape (N, output_channel, outH, outW).

Type Constraints

  • T:tensor(float32, Linear)

MMCVMultiLevelRoiAlign

Description

Perform RoIAlign on features from multiple levels. Used in bbox_head of most two-stage detectors.

Parameters

Type Parameter Description
int output_height height of output roi.
int output_width width of output roi.
list of floats featmap_strides feature map stride of each level.
int sampling_ratio number of input samples to take for each output sample. 0 means to take samples densely for current models.
float roi_scale_factor RoIs will be scaled by this factor before RoI Align.
int finest_scale Scale threshold of mapping to level 0. Default: 56.
int aligned If aligned=0, use the legacy implementation in MMDetection. Else, align the results more perfectly.

Inputs

inputs[0]: T
RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...].
inputs[1~]: T
Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.

Outputs

outputs[0]: T
RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element output[0][r-1] is a pooled feature map corresponding to the r-th RoI inputs[1][r-1].

Type Constraints

  • T:tensor(float32, Linear)

MMCVRoIAlign

Description

Perform RoIAlign on output feature, used in bbox_head of most two-stage detectors.

Parameters

Type Parameter Description
int output_height height of output roi
int output_width width of output roi
float spatial_scale used to scale the input boxes
int sampling_ratio number of input samples to take for each output sample. 0 means to take samples densely for current models.
str mode pooling mode in each bin. avg or max
int aligned If aligned=0, use the legacy implementation in MMDetection. Else, align the results more perfectly.

Inputs

inputs[0]: T
Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
inputs[1]: T
RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of inputs[0].

Outputs

outputs[0]: T
RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element output[0][r-1] is a pooled feature map corresponding to the r-th RoI inputs[1][r-1].

Type Constraints

  • T:tensor(float32, Linear)

ScatterND

Description

ScatterND takes three inputs data tensor of rank r >= 1, indices tensor of rank q >= 1, and updates tensor of rank q + r - indices.shape[-1] - 1. The output of the operation is produced by creating a copy of the input data, and then updating its value to values specified by updates at specific index positions specified by indices. Its output shape is the same as the shape of data. Note that indices should not have duplicate entries. That is, two or more updates for the same index-location is not supported.

The output is calculated via the following equation:

  output = np.copy(data)
  update_indices = indices.shape[:-1]
  for idx in np.ndindex(update_indices):
      output[indices[idx]] = updates[idx]

Parameters

None

Inputs

inputs[0]: T
Tensor of rank r>=1.
inputs[1]: tensor(int32, Linear)
Tensor of rank q>=1.
inputs[2]: T
Tensor of rank q + r - indices_shape[-1] - 1.

Outputs

outputs[0]: T
Tensor of rank r >= 1.

Type Constraints

  • T:tensor(float32, Linear), tensor(int32, Linear)

TRTBatchedRotatedNMS

Description

Batched rotated NMS with a fixed number of output bounding boxes.

Parameters

Type Parameter Description
int background_label_id The label ID for the background class. If there is no background class, set it to -1.
int num_classes The number of classes.
int topK The number of bounding boxes to be fed into the NMS step.
int keepTopK The number of total bounding boxes to be kept per-image after the NMS step. Should be less than or equal to the topK value.
float scoreThreshold The scalar threshold for score (low scoring boxes are removed).
float iouThreshold The scalar threshold for IoU (new boxes that have high IoU overlap with previously selected boxes are removed).
int isNormalized Set to false if the box coordinates are not normalized, meaning they are not in the range [0,1]. Defaults to true.
int clipBoxes Forcibly restrict bounding boxes to the normalized range [0,1]. Only applicable if isNormalized is also true. Defaults to true.

Inputs

inputs[0]: T
boxes; 4-D tensor of shape (N, num_boxes, num_classes, 5), where N is the batch size; `num_boxes` is the number of boxes; `num_classes` is the number of classes, which could be 1 if the boxes are shared between all classes.
inputs[1]: T
scores; 4-D tensor of shape (N, num_boxes, 1, num_classes).

Outputs

outputs[0]: T
dets; 3-D tensor of shape (N, valid_num_boxes, 6), `valid_num_boxes` is the number of boxes after NMS. For each row `dets[i,j,:] = [x0, y0, width, height, theta, score]`
outputs[1]: tensor(int32, Linear)
labels; 2-D tensor of shape (N, valid_num_boxes).

Type Constraints

  • T:tensor(float32, Linear)

GridPriorsTRT

Description

Generate the anchors for object detection task.

Parameters

Type Parameter Description
int stride_w The stride of the feature width.
int stride_h The stride of the feature height.

Inputs

inputs[0]: T
The base anchors; 2-D tensor with shape [num_base_anchor, 4].
inputs[1]: TAny
height provider; 1-D tensor with shape [featmap_height]. The data will never been used.
inputs[2]: TAny
width provider; 1-D tensor with shape [featmap_width]. The data will never been used.

Outputs

outputs[0]: T
output anchors; 2-D tensor of shape (num_base_anchor*featmap_height*featmap_widht, 4).

Type Constraints

  • T:tensor(float32, Linear)
  • TAny: Any