78 lines
1.9 KiB
Python
78 lines
1.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import tempfile
|
|
|
|
import onnx
|
|
import torch
|
|
|
|
from mmdeploy.core import RewriterContext, mark
|
|
from mmdeploy.core.optimizers import attribute_to_dict
|
|
from mmdeploy.utils.constants import IR, Backend
|
|
|
|
output_file = tempfile.NamedTemporaryFile(suffix='.onnx').name
|
|
|
|
|
|
def test_mark():
|
|
|
|
@mark('add', inputs=['a', 'b'], outputs='c')
|
|
def add(x, y):
|
|
return torch.add(x, y)
|
|
|
|
class TestModel(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x, y):
|
|
return add(x, y)
|
|
|
|
model = TestModel().eval()
|
|
|
|
# dummy input
|
|
x = torch.rand(2, 3, 4)
|
|
y = torch.rand(2, 3, 4)
|
|
|
|
torch.onnx.export(model, (x, y), output_file)
|
|
onnx_model = onnx.load(output_file)
|
|
|
|
nodes = onnx_model.graph.node
|
|
assert nodes[0].op_type == 'Mark'
|
|
assert nodes[0].domain == 'mmdeploy'
|
|
assert attribute_to_dict(nodes[0].attribute) == dict(
|
|
dtype=1,
|
|
func='add',
|
|
func_id=0,
|
|
id=0,
|
|
type='input',
|
|
name='a',
|
|
shape=[2, 3, 4])
|
|
|
|
assert nodes[1].op_type == 'Mark'
|
|
assert nodes[1].domain == 'mmdeploy'
|
|
assert attribute_to_dict(nodes[1].attribute) == dict(
|
|
dtype=1,
|
|
func='add',
|
|
func_id=0,
|
|
id=1,
|
|
type='input',
|
|
name='b',
|
|
shape=[2, 3, 4])
|
|
|
|
assert nodes[2].op_type == 'Add'
|
|
|
|
assert nodes[3].op_type == 'Mark'
|
|
assert nodes[3].domain == 'mmdeploy'
|
|
assert attribute_to_dict(nodes[3].attribute) == dict(
|
|
dtype=1,
|
|
func='add',
|
|
func_id=0,
|
|
id=0,
|
|
type='output',
|
|
name='c',
|
|
shape=[2, 3, 4])
|
|
|
|
with RewriterContext(
|
|
cfg=None, backend=Backend.TORCHSCRIPT.value,
|
|
ir=IR.TORCHSCRIPT), torch.no_grad(), torch.jit.optimized_execution(
|
|
True):
|
|
torch.jit.trace(model, (x, y))
|