mmdeploy/tests/test_core/test_mark.py

78 lines
1.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
import onnx
import torch
from mmdeploy.core import RewriterContext, mark
from mmdeploy.core.optimizers import attribute_to_dict
from mmdeploy.utils.constants import IR, Backend
output_file = tempfile.NamedTemporaryFile(suffix='.onnx').name
def test_mark():
@mark('add', inputs=['a', 'b'], outputs='c')
def add(x, y):
return torch.add(x, y)
class TestModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, y):
return add(x, y)
model = TestModel().eval()
# dummy input
x = torch.rand(2, 3, 4)
y = torch.rand(2, 3, 4)
torch.onnx.export(model, (x, y), output_file)
onnx_model = onnx.load(output_file)
nodes = onnx_model.graph.node
assert nodes[0].op_type == 'Mark'
assert nodes[0].domain == 'mmdeploy'
assert attribute_to_dict(nodes[0].attribute) == dict(
dtype=1,
func='add',
func_id=0,
id=0,
type='input',
name='a',
shape=[2, 3, 4])
assert nodes[1].op_type == 'Mark'
assert nodes[1].domain == 'mmdeploy'
assert attribute_to_dict(nodes[1].attribute) == dict(
dtype=1,
func='add',
func_id=0,
id=1,
type='input',
name='b',
shape=[2, 3, 4])
assert nodes[2].op_type == 'Add'
assert nodes[3].op_type == 'Mark'
assert nodes[3].domain == 'mmdeploy'
assert attribute_to_dict(nodes[3].attribute) == dict(
dtype=1,
func='add',
func_id=0,
id=0,
type='output',
name='c',
shape=[2, 3, 4])
with RewriterContext(
cfg=None, backend=Backend.TORCHSCRIPT.value,
ir=IR.TORCHSCRIPT), torch.no_grad(), torch.jit.optimized_execution(
True):
torch.jit.trace(model, (x, y))