mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* adjust csrc structure * adjust csrc includes * fix lint * fix lint * fix MSVC build * remove useless code
96 lines
3.4 KiB
C++
96 lines
3.4 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
// clang-format off
|
|
#include "catch.hpp"
|
|
// clang-format on
|
|
|
|
#include "mmdeploy/apis/c/detector.h"
|
|
#include "mmdeploy/core/logger.h"
|
|
#include "mmdeploy/core/utils/formatter.h"
|
|
#include "opencv2/opencv.hpp"
|
|
#include "test_resource.h"
|
|
using namespace std;
|
|
|
|
TEST_CASE("test detector's c api", "[detector]") {
|
|
MMDEPLOY_INFO("test detector");
|
|
auto test = [](const string &device, const string &model_path, const vector<string> &img_list) {
|
|
mm_handle_t handle{nullptr};
|
|
auto ret = mmdeploy_detector_create_by_path(model_path.c_str(), device.c_str(), 0, &handle);
|
|
REQUIRE(ret == MM_SUCCESS);
|
|
|
|
vector<cv::Mat> cv_mats;
|
|
vector<mm_mat_t> mats;
|
|
for (auto &img_path : img_list) {
|
|
cv::Mat mat = cv::imread(img_path);
|
|
REQUIRE(!mat.empty());
|
|
cv_mats.push_back(mat);
|
|
mats.push_back({mat.data, mat.rows, mat.cols, mat.channels(), MM_BGR, MM_INT8});
|
|
}
|
|
|
|
mm_detect_t *results{nullptr};
|
|
int *result_count{nullptr};
|
|
ret = mmdeploy_detector_apply(handle, mats.data(), (int)mats.size(), &results, &result_count);
|
|
REQUIRE(ret == MM_SUCCESS);
|
|
auto result_ptr = results;
|
|
for (auto i = 0; i < mats.size(); ++i) {
|
|
MMDEPLOY_INFO("the '{}-th' image has '{}' objects", i, result_count[i]);
|
|
for (auto j = 0; j < result_count[i]; ++j, ++result_ptr) {
|
|
auto &bbox = result_ptr->bbox;
|
|
MMDEPLOY_INFO(" >> bbox[{}, {}, {}, {}], label_id {}, score {}", bbox.left, bbox.top,
|
|
bbox.right, bbox.bottom, result_ptr->label_id, result_ptr->score);
|
|
}
|
|
}
|
|
mmdeploy_detector_release_result(results, result_count, (int)mats.size());
|
|
mmdeploy_detector_destroy(handle);
|
|
};
|
|
MMDEPLOY_INFO("get test resources");
|
|
auto &gResources = MMDeployTestResources::Get();
|
|
MMDEPLOY_INFO("locate image resources");
|
|
auto img_lists = gResources.LocateImageResources(fs::path{"mmdet"} / "images");
|
|
MMDEPLOY_INFO("{}", img_lists.size());
|
|
REQUIRE(!img_lists.empty());
|
|
|
|
for (auto &backend : gResources.backends()) {
|
|
MMDEPLOY_INFO("backend: {}", backend);
|
|
DYNAMIC_SECTION("loop backend: " << backend) {
|
|
auto model_list = gResources.LocateModelResources(fs::path{"mmdet"} / backend);
|
|
REQUIRE(!model_list.empty());
|
|
for (auto &model_path : model_list) {
|
|
MMDEPLOY_INFO("model: {}", model_path);
|
|
for (auto &device_name : gResources.device_names(backend)) {
|
|
test(device_name, model_path, img_lists);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
TEST_CASE("test detector's c api", "[detector]") {
|
|
mm_model_t model{};
|
|
// pretend the model is loaded
|
|
mm_handle_t handle{};
|
|
mmdeploy_async_detector_create(model, "cuda", 0, &handle);
|
|
|
|
std::vector<mm_mat_t> imgs;
|
|
std::vector<mmdeploy_sender_t> sndrs;
|
|
for (const auto &img : imgs) {
|
|
mmdeploy_value_t value = mmdeploy_async_detector_create_input(&img, 1);
|
|
mmdeploy_sender_t input = mmdeploy_executor_just(value);
|
|
mmdeploy_sender_t detect = mmdeploy_async_detector_apply(handle, input);
|
|
mmdeploy_sender_t started = mmdeploy_executor_ensure_started(detect);
|
|
sndrs.push_back(started);
|
|
}
|
|
|
|
for (int i = 0; i < imgs.size(); ++i) {
|
|
mmdeploy_value_t output = mmdeploy_executor_sync_wait(sndrs[i]);
|
|
mm_detect_t *dets{};
|
|
int *count{};
|
|
mmdeploy_async_detector_get_result(output, &dets, &count);
|
|
mmdeploy_detector_release_result(dets, count, 1);
|
|
}
|
|
|
|
mmdeploy_async_detector_destroy(handle);
|
|
}
|
|
#endif
|