AllentDan 4fc8828af8 fix ocr UT
fix ci and lint

fix det

fix cuda ci

fix mmdet test

update object detection

fix ut

fix layer norm ut

update ut

lock mmeit version

fix mmocr mmcls ut

add conftest.py

fix ocr ut

fix mmedit ci

install mmedit from source

fix rknn model and prepare_onnx_paddings__tensorrt UT

docstring

fix coreml export

update mmocr config

small test

recovery assert

fix ci
2022-09-29 16:37:36 +08:00

99 lines
2.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# dataset settings
dataset_type = 'CityscapesDataset'
data_root = 'tests/test_codebase/test_mmseg/data'
crop_size = (128, 128)
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=crop_size, keep_ratio=False),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadAnnotations', reduce_zero_label=True),
dict(type='PackSegInputs')
]
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
lazy_init=True,
serialize_data=False,
data_prefix=dict(img_path='', seg_map_path=''),
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
test_evaluator = val_evaluator
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
data_preprocessor = dict(
type='SegDataPreProcessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict(
type='EncoderDecoder',
data_preprocessor=data_preprocessor,
backbone=dict(
type='FastSCNN',
downsample_dw_channels=(32, 48),
global_in_channels=64,
global_block_channels=(64, 96, 128),
global_block_strides=(2, 2, 1),
global_out_channels=128,
higher_in_channels=64,
lower_in_channels=128,
fusion_out_channels=128,
out_indices=(0, 1, 2),
norm_cfg=norm_cfg,
align_corners=False),
decode_head=dict(
type='DepthwiseSeparableFCNHead',
in_channels=128,
channels=128,
concat_input=False,
num_classes=19,
in_index=-1,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))
# from default_runtime
default_scope = 'mmseg'
env_cfg = dict(
cudnn_benchmark=True,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'),
)
log_level = 'INFO'
load_from = None
resume = False
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='SegLocalVisualizer', vis_backends=vis_backends, name='visualizer')
# from schedules
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000),
sampler_seed=dict(type='DistSamplerSeedHook'),
)