mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
fix ci and lint fix det fix cuda ci fix mmdet test update object detection fix ut fix layer norm ut update ut lock mmeit version fix mmocr mmcls ut add conftest.py fix ocr ut fix mmedit ci install mmedit from source fix rknn model and prepare_onnx_paddings__tensorrt UT docstring fix coreml export update mmocr config small test recovery assert fix ci
474 lines
14 KiB
Python
474 lines
14 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import importlib
|
|
import logging
|
|
import os
|
|
import tempfile
|
|
from functools import partial
|
|
|
|
import pytest
|
|
import torch.multiprocessing as mp
|
|
from mmengine import Config
|
|
|
|
import mmdeploy.utils as util
|
|
from mmdeploy.backend.sdk.export_info import export2SDK
|
|
from mmdeploy.utils import target_wrapper
|
|
from mmdeploy.utils.constants import Backend, Codebase, Task
|
|
from mmdeploy.utils.test import get_random_name
|
|
|
|
correct_model_path = 'tests/test_codebase/test_mmedit/data/model.py'
|
|
correct_model_cfg = Config.fromfile(correct_model_path)
|
|
correct_deploy_path = 'tests/data/super-resolution.py'
|
|
correct_deploy_cfg = Config.fromfile(correct_deploy_path)
|
|
empty_file_path = tempfile.NamedTemporaryFile(suffix='.py').name
|
|
empty_path = './a.py'
|
|
|
|
|
|
@pytest.fixture(autouse=True, scope='module')
|
|
def create_empty_file():
|
|
with open(empty_file_path, mode='w'):
|
|
pass
|
|
|
|
|
|
class TestLoadConfigError:
|
|
|
|
def test_load_config_none(self):
|
|
with pytest.raises(AssertionError):
|
|
util.load_config()
|
|
|
|
def test_load_config_type_error(self):
|
|
with pytest.raises(TypeError):
|
|
util.load_config(1)
|
|
|
|
def test_load_config_file_error(self):
|
|
with pytest.raises(FileNotFoundError):
|
|
util.load_config(empty_path)
|
|
|
|
|
|
class TestLoadConfig:
|
|
|
|
@pytest.mark.parametrize('args', [
|
|
[empty_file_path],
|
|
[correct_model_path],
|
|
[correct_model_cfg],
|
|
(correct_model_path, correct_deploy_path),
|
|
(correct_model_path, correct_deploy_cfg),
|
|
(correct_model_cfg, correct_deploy_cfg),
|
|
])
|
|
def test_load_config(self, args):
|
|
configs = util.load_config(*args)
|
|
for v in zip(configs, args):
|
|
if isinstance(v[1], str):
|
|
cfg = Config.fromfile(v[1])
|
|
else:
|
|
cfg = v[1]
|
|
assert v[0]._cfg_dict == cfg._cfg_dict
|
|
|
|
|
|
class TestGetCodebaseConfig:
|
|
|
|
def test_get_codebase_config_empty(self):
|
|
assert util.get_codebase_config(Config(dict())) == {}
|
|
|
|
def test_get_codebase_config(self):
|
|
codebase_config = util.get_codebase_config(correct_deploy_path)
|
|
assert isinstance(codebase_config, dict) and len(codebase_config) > 1
|
|
|
|
|
|
class TestGetTaskType:
|
|
|
|
def test_get_task_type_none(self):
|
|
with pytest.raises(AssertionError):
|
|
util.get_task_type(Config(dict()))
|
|
|
|
def test_get_task_type(self):
|
|
assert util.get_task_type(correct_deploy_path) == Task.SUPER_RESOLUTION
|
|
|
|
|
|
class TestGetCodebase:
|
|
|
|
def test_get_codebase_none(self):
|
|
with pytest.raises(AssertionError):
|
|
util.get_codebase(Config(dict()))
|
|
|
|
def test_get_codebase(self):
|
|
assert util.get_codebase(correct_deploy_path) == Codebase.MMEDIT
|
|
|
|
|
|
class TestGetBackendConfig:
|
|
|
|
def test_get_backend_config_empty(self):
|
|
assert util.get_backend_config(Config(dict())) == {}
|
|
|
|
def test_get_backend_config(self):
|
|
backend_config = util.get_backend_config(correct_deploy_path)
|
|
assert isinstance(backend_config, dict) and len(backend_config) == 1
|
|
|
|
|
|
class TestGetBackend:
|
|
|
|
def test_get_backend_none(self):
|
|
with pytest.raises(AssertionError):
|
|
util.get_backend(Config(dict()))
|
|
|
|
def test_get_backend(self):
|
|
assert util.get_backend(correct_deploy_path) == Backend.ONNXRUNTIME
|
|
|
|
|
|
class TestGetOnnxConfig:
|
|
|
|
def test_get_onnx_config_empty(self):
|
|
assert util.get_onnx_config(Config(dict())) == {}
|
|
|
|
def test_get_onnx_config(self):
|
|
onnx_config = dict(
|
|
dynamic_axes={
|
|
'input': {
|
|
0: 'batch',
|
|
2: 'height',
|
|
3: 'width'
|
|
},
|
|
'output': {
|
|
0: 'batch',
|
|
2: 'height',
|
|
3: 'width'
|
|
}
|
|
},
|
|
type='onnx',
|
|
export_params=True,
|
|
keep_initializers_as_inputs=False,
|
|
opset_version=11,
|
|
save_file='end2end.onnx',
|
|
input_names=['input'],
|
|
output_names=['output'],
|
|
input_shape=None)
|
|
assert util.get_onnx_config(correct_deploy_path) == onnx_config
|
|
|
|
|
|
class TestIsDynamic:
|
|
|
|
config_with_onnx_config = Config(
|
|
dict(onnx_config=dict(), backend_config=dict(type='default')))
|
|
|
|
config_with_dynamic_axes = Config(
|
|
dict(
|
|
onnx_config=dict(
|
|
type='onnx',
|
|
dynamic_axes={'input': {
|
|
0: 'batch',
|
|
2: 'height',
|
|
3: 'width'
|
|
}}),
|
|
backend_config=dict(type='default')))
|
|
|
|
config_with_dynamic_axes_and_input_names = Config(
|
|
dict(
|
|
onnx_config=dict(
|
|
type='onnx',
|
|
input_names=['image'],
|
|
dynamic_axes={'image': {
|
|
0: 'batch',
|
|
2: 'height',
|
|
3: 'width'
|
|
}}),
|
|
backend_config=dict(type='default')))
|
|
|
|
config_with_dynamic_axes_list = Config(
|
|
dict(
|
|
onnx_config=dict(
|
|
type='onnx', input_names=['image'], dynamic_axes=[[0, 2, 3]]),
|
|
backend_config=dict(type='default')))
|
|
|
|
def test_is_dynamic_batch_none(self):
|
|
assert util.is_dynamic_batch(
|
|
TestIsDynamic.config_with_onnx_config) is False
|
|
|
|
def test_is_dynamic_batch_error_name(self):
|
|
assert util.is_dynamic_batch(TestIsDynamic.config_with_dynamic_axes,
|
|
'output') is False
|
|
|
|
def test_is_dynamic_batch(self):
|
|
assert util.is_dynamic_batch(
|
|
TestIsDynamic.config_with_dynamic_axes) is True
|
|
|
|
def test_is_dynamic_batch_axes_list(self):
|
|
assert util.is_dynamic_batch(
|
|
TestIsDynamic.config_with_dynamic_axes_list) is True
|
|
|
|
def test_is_dynamic_shape_none(self):
|
|
assert util.is_dynamic_shape(
|
|
TestIsDynamic.config_with_onnx_config) is False
|
|
|
|
def test_is_dynamic_shape_error_name(self):
|
|
assert util.is_dynamic_shape(TestIsDynamic.config_with_dynamic_axes,
|
|
'output') is False
|
|
|
|
def test_is_dynamic_shape(self):
|
|
assert util.is_dynamic_shape(
|
|
TestIsDynamic.config_with_dynamic_axes) is True
|
|
|
|
def test_is_dynamic_shape_input_names(self):
|
|
assert util.is_dynamic_shape(
|
|
TestIsDynamic.config_with_dynamic_axes_and_input_names) is True
|
|
|
|
def test_is_dynamic_shape_different_names(self):
|
|
config_with_different_names = \
|
|
TestIsDynamic.config_with_dynamic_axes_and_input_names
|
|
util.get_ir_config(
|
|
config_with_different_names).input_names = 'another_name'
|
|
assert util.is_dynamic_shape(config_with_different_names) is False
|
|
|
|
def test_is_dynamic_shape_axes_list(self):
|
|
assert util.is_dynamic_shape(
|
|
TestIsDynamic.config_with_dynamic_axes_list) is True
|
|
|
|
|
|
class TestGetInputShape:
|
|
config_without_input_shape = Config(
|
|
dict(onnx_config=dict(input_shape=None)))
|
|
config_with_input_shape = Config(
|
|
dict(onnx_config=dict(input_shape=[1, 1])))
|
|
config_with_error_shape = Config(
|
|
dict(onnx_config=dict(input_shape=[1, 1, 1])))
|
|
|
|
def test_get_input_shape_none(self):
|
|
assert util.get_input_shape(
|
|
TestGetInputShape.config_without_input_shape) is None
|
|
|
|
def test_get_input_shape_error(self):
|
|
with pytest.raises(Exception):
|
|
util.get_input_shape(TestGetInputShape.config_with_error_shape)
|
|
|
|
def test_get_input_shape(self):
|
|
assert util.get_input_shape(
|
|
TestGetInputShape.config_with_input_shape) == [1, 1]
|
|
|
|
|
|
class TestCfgApplyMark:
|
|
|
|
config_with_mask = Config(dict(partition_config=dict(apply_marks=True)))
|
|
|
|
def test_cfg_apply_marks_none(self):
|
|
assert util.cfg_apply_marks(Config(dict())) is None
|
|
|
|
def test_cfg_apply_marks(self):
|
|
assert util.cfg_apply_marks(TestCfgApplyMark.config_with_mask) is True
|
|
|
|
|
|
class TestGetPartitionConfig:
|
|
|
|
config_with_mask = Config(dict(partition_config=dict(apply_marks=True)))
|
|
config_without_mask = Config(
|
|
dict(partition_config=dict(apply_marks=False)))
|
|
|
|
def test_get_partition_config_none(self):
|
|
assert util.get_partition_config(Config(dict())) is None
|
|
|
|
def test_get_partition_config_without_mask(self):
|
|
assert util.get_partition_config(
|
|
TestGetPartitionConfig.config_without_mask) is None
|
|
|
|
def test_get_partition_config(self):
|
|
assert util.get_partition_config(
|
|
TestGetPartitionConfig.config_with_mask) == dict(apply_marks=True)
|
|
|
|
|
|
class TestGetCalib:
|
|
config_with_calib = Config(
|
|
dict(calib_config=dict(create_calib=True, calib_file='calib_data.h5')))
|
|
|
|
config_without_calib = Config(
|
|
dict(
|
|
calib_config=dict(create_calib=False, calib_file='calib_data.h5')))
|
|
|
|
def test_get_calib_config(self):
|
|
assert util.get_calib_config(TestGetCalib.config_with_calib) == dict(
|
|
create_calib=True, calib_file='calib_data.h5')
|
|
|
|
def test_get_calib_filename_none(self):
|
|
assert util.get_calib_filename(Config(dict())) is None
|
|
|
|
def test_get_calib_filename_false(self):
|
|
assert util.get_calib_filename(
|
|
TestGetCalib.config_without_calib) is None
|
|
|
|
def test_get_calib_filename(self):
|
|
assert util.get_calib_filename(
|
|
TestGetCalib.config_with_calib) == 'calib_data.h5'
|
|
|
|
|
|
class TestGetCommonConfig:
|
|
config_with_common_config = Config(
|
|
dict(
|
|
backend_config=dict(
|
|
type='tensorrt', common_config=dict(fp16_mode=False))))
|
|
|
|
def test_get_common_config(self):
|
|
assert util.get_common_config(
|
|
TestGetCommonConfig.config_with_common_config) == dict(
|
|
fp16_mode=False)
|
|
|
|
|
|
class TestGetModelInputs:
|
|
|
|
config_with_model_inputs = Config(
|
|
dict(backend_config=dict(model_inputs=[dict(input_shapes=None)])))
|
|
|
|
def test_model_inputs(self):
|
|
assert util.get_model_inputs(
|
|
TestGetModelInputs.config_with_model_inputs) == [
|
|
dict(input_shapes=None)
|
|
]
|
|
|
|
|
|
class TestGetDynamicAxes:
|
|
|
|
input_name = get_random_name()
|
|
|
|
def test_with_empty_cfg(self):
|
|
deploy_cfg = Config()
|
|
with pytest.raises(KeyError):
|
|
util.get_dynamic_axes(deploy_cfg)
|
|
|
|
def test_can_get_axes_from_dict(self):
|
|
expected_dynamic_axes = {
|
|
self.input_name: {
|
|
0: 'batch',
|
|
2: 'height',
|
|
3: 'width'
|
|
}
|
|
}
|
|
deploy_cfg = Config(
|
|
dict(onnx_config=dict(dynamic_axes=expected_dynamic_axes)))
|
|
dynamic_axes = util.get_dynamic_axes(deploy_cfg)
|
|
assert expected_dynamic_axes == dynamic_axes
|
|
|
|
def test_can_not_get_axes_from_list_without_names(self):
|
|
axes = [[0, 2, 3]]
|
|
deploy_cfg = Config(dict(onnx_config=dict(dynamic_axes=axes)))
|
|
with pytest.raises(KeyError):
|
|
util.get_dynamic_axes(deploy_cfg)
|
|
|
|
def test_can_get_axes_from_list_with_args(self):
|
|
axes = [[0, 2, 3]]
|
|
expected_dynamic_axes = {self.input_name: axes[0]}
|
|
axes_names = [self.input_name]
|
|
deploy_cfg = Config(dict(onnx_config=dict(dynamic_axes=axes)))
|
|
dynamic_axes = util.get_dynamic_axes(deploy_cfg, axes_names)
|
|
assert expected_dynamic_axes == dynamic_axes
|
|
|
|
def test_can_get_axes_from_list_with_cfg(self):
|
|
output_name = get_random_name()
|
|
axes = [[0, 2, 3], [0]]
|
|
expected_dynamic_axes = {
|
|
self.input_name: axes[0],
|
|
output_name: axes[1]
|
|
}
|
|
deploy_cfg = Config(
|
|
dict(
|
|
onnx_config=dict(
|
|
input_names=[self.input_name],
|
|
output_names=[output_name],
|
|
dynamic_axes=axes)))
|
|
dynamic_axes = util.get_dynamic_axes(deploy_cfg)
|
|
assert expected_dynamic_axes == dynamic_axes
|
|
|
|
|
|
class TestParseDeviceID:
|
|
|
|
def test_cpu(self):
|
|
device = 'cpu'
|
|
assert util.parse_device_id(device) == -1
|
|
assert util.parse_device_type(device) == 'cpu'
|
|
|
|
def test_cuda(self):
|
|
device = 'cuda'
|
|
assert util.parse_device_id(device) == 0
|
|
assert util.parse_device_type(device) == 'cuda'
|
|
|
|
def test_cuda10(self):
|
|
device = 'cuda:10'
|
|
assert util.parse_device_id(device) == 10
|
|
|
|
def test_incorrect_cuda_device(self):
|
|
device = 'cuda_5'
|
|
with pytest.raises(AssertionError):
|
|
util.parse_device_id(device)
|
|
|
|
def test_incorrect_device(self):
|
|
device = 'abcd:1'
|
|
assert util.parse_device_id(device) is None
|
|
|
|
|
|
def test_AdvancedEnum():
|
|
keys = [
|
|
Task.TEXT_DETECTION, Task.TEXT_RECOGNITION, Task.SEGMENTATION,
|
|
Task.SUPER_RESOLUTION, Task.CLASSIFICATION, Task.OBJECT_DETECTION
|
|
]
|
|
vals = [
|
|
'TextDetection', 'TextRecognition', 'Segmentation', 'SuperResolution',
|
|
'Classification', 'ObjectDetection'
|
|
]
|
|
for k, v in zip(keys, vals):
|
|
assert Task.get(v) == k
|
|
assert k.value == v
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not importlib.util.find_spec('mmedit'), reason='requires mmedit')
|
|
def test_export_info():
|
|
with tempfile.TemporaryDirectory() as dir:
|
|
export2SDK(correct_deploy_cfg, correct_model_cfg, dir, '', 'cpu')
|
|
deploy_json = os.path.join(dir, 'deploy.json')
|
|
pipeline_json = os.path.join(dir, 'pipeline.json')
|
|
detail_json = os.path.join(dir, 'detail.json')
|
|
assert os.path.exists(pipeline_json)
|
|
assert os.path.exists(detail_json)
|
|
assert os.path.exists(deploy_json)
|
|
|
|
|
|
def wrap_target():
|
|
return 0
|
|
|
|
|
|
def test_target_wrapper():
|
|
|
|
log_level = logging.INFO
|
|
|
|
ret_value = mp.Value('d', 0, lock=False)
|
|
ret_value.value = -1
|
|
wrap_func = partial(target_wrapper, wrap_target, log_level, ret_value)
|
|
|
|
process = mp.Process(target=wrap_func)
|
|
process.start()
|
|
process.join()
|
|
|
|
assert ret_value.value == 0
|
|
|
|
|
|
def test_get_root_logger():
|
|
from mmdeploy.utils import get_root_logger
|
|
logger = get_root_logger()
|
|
logger.info('This is a test message')
|
|
|
|
|
|
def test_get_library_version():
|
|
assert util.get_library_version('abcdefg') is None
|
|
try:
|
|
lib = importlib.import_module('setuptools')
|
|
except ImportError:
|
|
pass
|
|
else:
|
|
assert util.get_library_version('setuptools') == lib.__version__
|
|
|
|
|
|
def test_get_codebase_version():
|
|
versions = util.get_codebase_version()
|
|
for k, v in versions.items():
|
|
assert v == util.get_library_version(k)
|
|
|
|
|
|
def test_get_backend_version():
|
|
versions = util.get_backend_version()
|
|
for k, v in versions.items():
|
|
assert v == util.get_library_version(k)
|