mmdeploy/csrc/apis/python/pose_detector.cpp

120 lines
3.5 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "pose_detector.h"
#include <array>
#include <sstream>
#include "common.h"
namespace mmdeploy {
using Rect = std::array<float, 4>;
class PyPoseDedector {
public:
PyPoseDedector(const char *model_path, const char *device_name, int device_id) {
auto status =
mmdeploy_pose_detector_create_by_path(model_path, device_name, device_id, &handle_);
if (status != MM_SUCCESS) {
throw std::runtime_error("failed to create pose_detector");
}
}
py::list Apply(const std::vector<PyImage> &imgs, const std::vector<std::vector<Rect>> &vboxes) {
if (imgs.size() == 0 && vboxes.size() == 0) {
return py::list{};
}
if (vboxes.size() != 0 && vboxes.size() != imgs.size()) {
std::ostringstream os;
os << "imgs length not equal with vboxes [" << imgs.size() << " vs " << vboxes.size() << "]";
throw std::invalid_argument(os.str());
}
std::vector<mm_mat_t> mats;
std::vector<mm_rect_t> boxes;
std::vector<int> bbox_count;
mats.reserve(imgs.size());
for (const auto &img : imgs) {
auto mat = GetMat(img);
mats.push_back(mat);
}
for (auto _boxes : vboxes) {
for (auto _box : _boxes) {
mm_rect_t box = {_box[0], _box[1], _box[2], _box[3]};
boxes.push_back(box);
}
bbox_count.push_back(_boxes.size());
}
// full image
if (vboxes.size() == 0) {
for (int i = 0; i < mats.size(); i++) {
mm_rect_t box = {0.f, 0.f, mats[i].width - 1.f, mats[i].height - 1.f};
boxes.push_back(box);
bbox_count.push_back(1);
}
}
mm_pose_detect_t *detection{};
auto status = mmdeploy_pose_detector_apply_bbox(handle_, mats.data(), (int)mats.size(),
boxes.data(), bbox_count.data(), &detection);
if (status != MM_SUCCESS) {
throw std::runtime_error("failed to apply pose_detector, code: " + std::to_string(status));
}
auto output = py::list{};
auto result = detection;
for (int i = 0; i < mats.size(); i++) {
if (bbox_count[i] == 0) {
output.append(py::none());
continue;
}
int n_point = result->length;
auto pred = py::array_t<float>({bbox_count[i], n_point, 3});
auto dst = pred.mutable_data();
for (int j = 0; j < bbox_count[i]; j++) {
for (int k = 0; k < n_point; k++) {
dst[0] = result->point[k].x;
dst[1] = result->point[k].y;
dst[2] = result->score[k];
dst += 3;
}
result++;
}
output.append(std::move(pred));
}
int total = std::accumulate(bbox_count.begin(), bbox_count.end(), 0);
mmdeploy_pose_detector_release_result(detection, total);
return output;
}
~PyPoseDedector() {
mmdeploy_pose_detector_destroy(handle_);
handle_ = {};
}
private:
mm_handle_t handle_{};
};
static void register_python_pose_detector(py::module &m) {
py::class_<PyPoseDedector>(m, "PoseDetector")
.def(py::init([](const char *model_path, const char *device_name, int device_id) {
return std::make_unique<PyPoseDedector>(model_path, device_name, device_id);
}))
.def("__call__", &PyPoseDedector::Apply, py::arg("imgs"),
py::arg("vboxes") = std::vector<std::vector<Rect>>());
}
class PythonPoseDetectorRegisterer {
public:
PythonPoseDetectorRegisterer() {
gPythonBindings().emplace("pose_detector", register_python_pose_detector);
}
};
static PythonPoseDetectorRegisterer python_pose_detector_registerer;
} // namespace mmdeploy