mmdeploy/csrc/codebase/mmrotate/oriented_object_detection.cpp

115 lines
3.7 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include "core/device.h"
#include "core/registry.h"
#include "core/serialization.h"
#include "core/tensor.h"
#include "core/utils/device_utils.h"
#include "core/utils/formatter.h"
#include "core/value.h"
#include "mmrotate.h"
#include "opencv_utils.h"
namespace mmdeploy::mmrotate {
using std::vector;
class ResizeRBBox : public MMRotate {
public:
explicit ResizeRBBox(const Value& cfg) : MMRotate(cfg) {
if (cfg.contains("params")) {
score_thr_ = cfg["params"].value("score_thr", 0.05f);
}
}
Result<Value> operator()(const Value& prep_res, const Value& infer_res) {
MMDEPLOY_DEBUG("prep_res: {}", prep_res);
MMDEPLOY_DEBUG("infer_res: {}", infer_res);
Device cpu_device{"cpu"};
OUTCOME_TRY(auto dets,
MakeAvailableOnDevice(infer_res["dets"].get<Tensor>(), cpu_device, stream_));
OUTCOME_TRY(auto labels,
MakeAvailableOnDevice(infer_res["labels"].get<Tensor>(), cpu_device, stream_));
OUTCOME_TRY(stream_.Wait());
if (!(dets.shape().size() == 3 && dets.shape(2) == 6 && dets.data_type() == DataType::kFLOAT)) {
MMDEPLOY_ERROR("unsupported `dets` tensor, shape: {}, dtype: {}", dets.shape(),
(int)dets.data_type());
return Status(eNotSupported);
}
if (labels.shape().size() != 2) {
MMDEPLOY_ERROR("unsupported `labels`, tensor, shape: {}, dtype: {}", labels.shape(),
(int)labels.data_type());
return Status(eNotSupported);
}
OUTCOME_TRY(auto result, DispatchGetBBoxes(prep_res["img_metas"], dets, labels));
return to_value(result);
}
Result<RotatedDetectorOutput> DispatchGetBBoxes(const Value& prep_res, const Tensor& dets,
const Tensor& labels) {
auto data_type = labels.data_type();
switch (data_type) {
case DataType::kFLOAT:
return GetRBBoxes<float>(prep_res, dets, labels);
case DataType::kINT32:
return GetRBBoxes<int32_t>(prep_res, dets, labels);
case DataType::kINT64:
return GetRBBoxes<int64_t>(prep_res, dets, labels);
default:
return Status(eNotSupported);
}
}
template <typename T>
Result<RotatedDetectorOutput> GetRBBoxes(const Value& prep_res, const Tensor& dets,
const Tensor& labels) {
RotatedDetectorOutput objs;
auto* dets_ptr = dets.data<float>();
auto* labels_ptr = labels.data<T>();
vector<float> scale_factor;
if (prep_res.contains("scale_factor")) {
from_value(prep_res["scale_factor"], scale_factor);
} else {
scale_factor = {1.f, 1.f, 1.f, 1.f};
}
int ori_width = prep_res["ori_shape"][2].get<int>();
int ori_height = prep_res["ori_shape"][1].get<int>();
auto bboxes_number = dets.shape()[1];
auto channels = dets.shape()[2];
for (auto i = 0; i < bboxes_number; ++i, dets_ptr += channels, ++labels_ptr) {
float score = dets_ptr[channels - 1];
if (score <= score_thr_) {
continue;
}
auto cx = dets_ptr[0] / scale_factor[0];
auto cy = dets_ptr[1] / scale_factor[1];
auto width = dets_ptr[2] / scale_factor[0];
auto height = dets_ptr[3] / scale_factor[1];
auto angle = dets_ptr[4];
RotatedDetectorOutput::Detection det{};
det.label_id = static_cast<int>(*labels_ptr);
det.score = score;
det.rbbox = {cx, cy, width, height, angle};
objs.detections.push_back(std::move(det));
}
return objs;
}
private:
float score_thr_;
};
REGISTER_CODEBASE_COMPONENT(MMRotate, ResizeRBBox);
} // namespace mmdeploy::mmrotate