mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* hold async data and wait only at the end of the pipeline * fix use-after-free bugs * fix wording * bypass trivial cases for Pad to avoid ppl.cv's bug * fix pad * fix lint * cleanup * fix DefaultFormatBundle * fix all cpu preprocess impl * suppress log * fix dynamic library build & add comments for SyncOnScopeExit
85 lines
2.9 KiB
C++
85 lines
2.9 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#include "core/utils/device_utils.h"
|
|
#include "core/utils/formatter.h"
|
|
#include "preprocess/transform/normalize.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace mmdeploy::cuda {
|
|
|
|
template <typename T, int channels>
|
|
void Normalize(const T* src, int height, int width, int stride, float* output, const float* mean,
|
|
const float* std, bool to_rgb, cudaStream_t stream);
|
|
|
|
class NormalizeImpl : public ::mmdeploy::NormalizeImpl {
|
|
public:
|
|
explicit NormalizeImpl(const Value& args) : ::mmdeploy::NormalizeImpl(args) {}
|
|
|
|
protected:
|
|
Result<Tensor> NormalizeImage(const Tensor& tensor) override {
|
|
OUTCOME_TRY(auto src_tensor, MakeAvailableOnDevice(tensor, device_, stream_));
|
|
|
|
SyncOnScopeExit sync(stream_, src_tensor.buffer() != tensor.buffer(), src_tensor);
|
|
|
|
auto src_desc = src_tensor.desc();
|
|
int h = (int)src_desc.shape[1];
|
|
int w = (int)src_desc.shape[2];
|
|
int c = (int)src_desc.shape[3];
|
|
int stride = w * c;
|
|
|
|
TensorDesc dst_desc{device_, DataType::kFLOAT, src_desc.shape, src_desc.name};
|
|
Tensor dst_tensor{dst_desc};
|
|
auto output = dst_tensor.data<float>();
|
|
auto stream = ::mmdeploy::GetNative<cudaStream_t>(stream_);
|
|
|
|
if (DataType::kINT8 == src_desc.data_type) {
|
|
auto input = src_tensor.data<uint8_t>();
|
|
if (3 == c) {
|
|
Normalize<uint8_t, 3>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
|
|
arg_.to_rgb, stream);
|
|
} else if (1 == c) {
|
|
Normalize<uint8_t, 1>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
|
|
arg_.to_rgb, stream);
|
|
} else {
|
|
MMDEPLOY_ERROR("unsupported channels {}", c);
|
|
return Status(eNotSupported);
|
|
}
|
|
} else if (DataType::kFLOAT == src_desc.data_type) {
|
|
auto input = src_tensor.data<float>();
|
|
if (3 == c) {
|
|
Normalize<float, 3>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
|
|
arg_.to_rgb, stream);
|
|
} else if (1 == c) {
|
|
Normalize<float, 1>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
|
|
arg_.to_rgb, stream);
|
|
} else {
|
|
MMDEPLOY_ERROR("unsupported channels {}", c);
|
|
return Status(eNotSupported);
|
|
}
|
|
} else {
|
|
MMDEPLOY_ERROR("unsupported data type {}", src_desc.data_type);
|
|
assert(0);
|
|
return Status(eNotSupported);
|
|
}
|
|
return dst_tensor;
|
|
}
|
|
};
|
|
|
|
class NormalizeImplCreator : public Creator<::mmdeploy::NormalizeImpl> {
|
|
public:
|
|
const char* GetName() const override { return "cuda"; }
|
|
int GetVersion() const override { return 1; }
|
|
std::unique_ptr<::mmdeploy::NormalizeImpl> Create(const Value& args) override {
|
|
return make_unique<NormalizeImpl>(args);
|
|
}
|
|
};
|
|
|
|
} // namespace mmdeploy::cuda
|
|
|
|
using mmdeploy::NormalizeImpl;
|
|
using mmdeploy::cuda::NormalizeImplCreator;
|
|
REGISTER_MODULE(NormalizeImpl, NormalizeImplCreator);
|