156 lines
5.3 KiB
C++
156 lines
5.3 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include <set>
|
|
|
|
#include "archive/json_archive.h"
|
|
#include "archive/value_archive.h"
|
|
#include "core/tensor.h"
|
|
#include "core/utils/device_utils.h"
|
|
#include "core/utils/formatter.h"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include "preprocess/cpu/opencv_utils.h"
|
|
#include "preprocess/transform/resize.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace mmdeploy {
|
|
|
|
class ResizeOCRImpl : public Module {
|
|
public:
|
|
explicit ResizeOCRImpl(const Value& args) noexcept {
|
|
height_ = args.value("height", height_);
|
|
min_width_ = args.contains("min_width") && args["min_width"].is_number_integer()
|
|
? args["min_width"].get<int>()
|
|
: min_width_;
|
|
max_width_ = args.contains("max_width") && args["max_width"].is_number_integer()
|
|
? args["max_width"].get<int>()
|
|
: max_width_;
|
|
keep_aspect_ratio_ = args.value("keep_aspect_ratio", keep_aspect_ratio_);
|
|
backend_ = args.contains("backend") && args["backend"].is_string()
|
|
? args["backend"].get<string>()
|
|
: backend_;
|
|
img_pad_value_ = args.value("img_pad_value", img_pad_value_);
|
|
width_downsample_ratio_ = args.value("width_downsample_ratio", width_downsample_ratio_);
|
|
stream_ = args["context"]["stream"].get<Stream>();
|
|
}
|
|
|
|
~ResizeOCRImpl() override = default;
|
|
|
|
Result<Value> Process(const Value& input) override {
|
|
DEBUG("input: {}", input);
|
|
auto dst_height = height_;
|
|
auto dst_min_width = min_width_;
|
|
auto dst_max_width = max_width_;
|
|
|
|
std::vector<int> img_shape; // NHWC
|
|
from_value(input["img_shape"], img_shape);
|
|
|
|
std::vector<int> ori_shape; // NHWC
|
|
from_value(input["ori_shape"], ori_shape);
|
|
|
|
auto ori_height = ori_shape[1];
|
|
auto ori_width = ori_shape[2];
|
|
auto valid_ratio = 1.f;
|
|
|
|
Device host{"cpu"};
|
|
auto _img = input["img"].get<Tensor>();
|
|
OUTCOME_TRY(auto img, MakeAvailableOnDevice(_img, host, stream_));
|
|
stream_.Wait().value();
|
|
Tensor img_resize;
|
|
if (keep_aspect_ratio_) {
|
|
auto new_width = static_cast<int>(std::ceil(1.f * dst_height / ori_height * ori_width));
|
|
auto width_divisor = static_cast<int>(1 / width_downsample_ratio_);
|
|
if (new_width % width_divisor != 0) {
|
|
new_width = std::round(1.f * new_width / width_divisor) * width_divisor;
|
|
}
|
|
if (dst_min_width > 0) {
|
|
new_width = std::max(dst_min_width, new_width);
|
|
}
|
|
if (dst_max_width > 0) {
|
|
valid_ratio = std::min(1., 1. * new_width / dst_max_width);
|
|
auto resize_width = std::min(dst_max_width, new_width);
|
|
img_resize = ResizeImage(img, dst_height, resize_width);
|
|
if (new_width < dst_max_width) {
|
|
img_resize = PadImage(img_resize, dst_height, dst_max_width);
|
|
}
|
|
} else {
|
|
img_resize = ResizeImage(img, dst_height, new_width);
|
|
}
|
|
} else {
|
|
img_resize = ResizeImage(img, dst_height, dst_max_width);
|
|
}
|
|
Value output = input;
|
|
output["img"] = img_resize;
|
|
output["resize_shape"] = to_value(img_resize.desc().shape);
|
|
output["pad_shape"] = output["resize_shape"];
|
|
output["valid_ratio"] = valid_ratio;
|
|
DEBUG("output: {}", to_json(output).dump(2));
|
|
return output;
|
|
}
|
|
|
|
Tensor ResizeImage(const Tensor& img, int dst_h, int dst_w) {
|
|
TensorDesc desc = img.desc();
|
|
assert(desc.shape.size() == 4);
|
|
assert(desc.data_type == DataType::kINT8);
|
|
int h = desc.shape[1];
|
|
int w = desc.shape[2];
|
|
int c = desc.shape[3];
|
|
assert(c == 3 or c == 1);
|
|
cv::Mat src_mat, dst_mat;
|
|
if (3 == c) { // rgb
|
|
src_mat = cv::Mat(h, w, CV_8UC3, const_cast<uint8_t*>(img.data<uint8_t>()));
|
|
} else { // gray
|
|
src_mat = cv::Mat(h, w, CV_8UC1, const_cast<uint8_t*>(img.data<uint8_t>()));
|
|
}
|
|
cv::Size size{dst_w, dst_h};
|
|
cv::resize(src_mat, dst_mat, size, cv::INTER_LINEAR);
|
|
return Tensor({desc.device, desc.data_type, {1, dst_h, dst_w, c}, ""},
|
|
{dst_mat.data, [mat = dst_mat](void* ptr) {}});
|
|
}
|
|
|
|
Tensor PadImage(const Tensor& src_img, int height, int width) {
|
|
cv::Mat src_mat = cpu::Tensor2CVMat(src_img);
|
|
cv::Mat dst_mat;
|
|
auto pad_h = std::max(0, height - src_mat.rows);
|
|
auto pad_w = std::max(0, width - src_mat.cols);
|
|
cv::copyMakeBorder(src_mat, dst_mat, 0, pad_h, 0, pad_w, cv::BORDER_CONSTANT, img_pad_value_);
|
|
return cpu::CVMat2Tensor(dst_mat);
|
|
}
|
|
|
|
protected:
|
|
int height_{-1};
|
|
int min_width_{-1};
|
|
int max_width_{-1};
|
|
bool keep_aspect_ratio_{true};
|
|
float img_pad_value_{0};
|
|
float width_downsample_ratio_{1. / 16};
|
|
std::string backend_;
|
|
Stream stream_;
|
|
};
|
|
|
|
class ResizeOCRImplCreator : public Creator<ResizeOCRImpl> {
|
|
public:
|
|
const char* GetName() const override { return "cpu"; }
|
|
int GetVersion() const override { return 1; }
|
|
ReturnType Create(const Value& args) override { return std::make_unique<ResizeOCRImpl>(args); }
|
|
};
|
|
|
|
REGISTER_MODULE(ResizeOCRImpl, ResizeOCRImplCreator);
|
|
|
|
class ResizeOCR : public Transform {
|
|
public:
|
|
explicit ResizeOCR(const Value& args) : Transform(args) {
|
|
impl_ = Instantiate<ResizeOCRImpl>("ResizeOCR", args);
|
|
}
|
|
~ResizeOCR() override = default;
|
|
|
|
Result<Value> Process(const Value& input) override { return impl_->Process(input); }
|
|
|
|
private:
|
|
std::unique_ptr<ResizeOCRImpl> impl_;
|
|
static const std::string name_;
|
|
};
|
|
|
|
DECLARE_AND_REGISTER_MODULE(Transform, ResizeOCR, 1);
|
|
} // namespace mmdeploy
|