mmdeploy/tools/deploy.py

278 lines
10 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import logging
import os.path as osp
from functools import partial
import mmcv
import torch.multiprocessing as mp
from torch.multiprocessing import Process, set_start_method
from mmdeploy.apis import (create_calib_table, extract_model,
get_predefined_partition_cfg, torch2onnx,
visualize_model)
from mmdeploy.utils import (Backend, get_backend, get_calib_filename,
get_ir_config, get_model_inputs, get_onnx_config,
get_partition_config, get_root_logger, load_config,
target_wrapper)
from mmdeploy.utils.export_info import dump_info
def parse_args():
parser = argparse.ArgumentParser(description='Export model to backends.')
parser.add_argument('deploy_cfg', help='deploy config path')
parser.add_argument('model_cfg', help='model config path')
parser.add_argument('checkpoint', help='model checkpoint path')
parser.add_argument('img', help='image used to convert model model')
parser.add_argument(
'--test-img', default=None, help='image used to test model')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--calib-dataset-cfg',
help='dataset config path used to calibrate.',
default=None)
parser.add_argument(
'--device', help='device used for conversion', default='cpu')
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
parser.add_argument(
'--show', action='store_true', help='Show detection outputs')
parser.add_argument(
'--dump-info', action='store_true', help='Output information for SDK')
args = parser.parse_args()
return args
def create_process(name, target, args, kwargs, ret_value=None):
logger = get_root_logger()
logger.info(f'{name} start.')
log_level = logger.level
wrap_func = partial(target_wrapper, target, log_level, ret_value)
process = Process(target=wrap_func, args=args, kwargs=kwargs)
process.start()
process.join()
if ret_value is not None:
if ret_value.value != 0:
logger.error(f'{name} failed.')
exit()
else:
logger.info(f'{name} success.')
def main():
args = parse_args()
set_start_method('spawn')
logger = get_root_logger()
logger.setLevel(args.log_level)
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
checkpoint_path = args.checkpoint
# load deploy_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
# create work_dir if not
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
if args.dump_info:
dump_info(deploy_cfg, model_cfg, args.work_dir, pth=checkpoint_path)
ret_value = mp.Value('d', 0, lock=False)
# convert onnx
onnx_save_file = get_onnx_config(deploy_cfg)['save_file']
create_process(
'torch2onnx',
target=torch2onnx,
args=(args.img, args.work_dir, onnx_save_file, deploy_cfg_path,
model_cfg_path, checkpoint_path),
kwargs=dict(device=args.device),
ret_value=ret_value)
# convert backend
onnx_files = [osp.join(args.work_dir, onnx_save_file)]
# partition model
partition_cfgs = get_partition_config(deploy_cfg)
if partition_cfgs is not None:
if 'partition_cfg' in partition_cfgs:
partition_cfgs = partition_cfgs.get('partition_cfg', None)
else:
assert 'type' in partition_cfgs
partition_cfgs = get_predefined_partition_cfg(
deploy_cfg, partition_cfgs['type'])
origin_onnx_file = onnx_files[0]
onnx_files = []
for partition_cfg in partition_cfgs:
save_file = partition_cfg['save_file']
save_path = osp.join(args.work_dir, save_file)
start = partition_cfg['start']
end = partition_cfg['end']
dynamic_axes = partition_cfg.get('dynamic_axes', None)
create_process(
f'partition model {save_file} with start: {start}, end: {end}',
extract_model,
args=(origin_onnx_file, start, end),
kwargs=dict(dynamic_axes=dynamic_axes, save_file=save_path),
ret_value=ret_value)
onnx_files.append(save_path)
# calib data
calib_filename = get_calib_filename(deploy_cfg)
if calib_filename is not None:
calib_path = osp.join(args.work_dir, calib_filename)
create_process(
'calibration',
create_calib_table,
args=(calib_path, deploy_cfg_path, model_cfg_path,
checkpoint_path),
kwargs=dict(
dataset_cfg=args.calib_dataset_cfg,
dataset_type='val',
device=args.device),
ret_value=ret_value)
backend_files = onnx_files
# convert backend
backend = get_backend(deploy_cfg)
if backend == Backend.TENSORRT:
model_params = get_model_inputs(deploy_cfg)
assert len(model_params) == len(onnx_files)
from mmdeploy.apis.tensorrt import is_available as trt_is_available
from mmdeploy.apis.tensorrt import onnx2tensorrt
assert trt_is_available(
), 'TensorRT is not available,' \
+ ' please install TensorRT and build TensorRT custom ops first.'
backend_files = []
for model_id, model_param, onnx_path in zip(
range(len(onnx_files)), model_params, onnx_files):
onnx_name = osp.splitext(osp.split(onnx_path)[1])[0]
save_file = model_param.get('save_file', onnx_name + '.engine')
partition_type = 'end2end' if partition_cfgs is None \
else onnx_name
create_process(
f'onnx2tensorrt of {onnx_path}',
target=onnx2tensorrt,
args=(args.work_dir, save_file, model_id, deploy_cfg_path,
onnx_path),
kwargs=dict(device=args.device, partition_type=partition_type),
ret_value=ret_value)
backend_files.append(osp.join(args.work_dir, save_file))
elif backend == Backend.NCNN:
from mmdeploy.apis.ncnn import is_available as is_available_ncnn
if not is_available_ncnn():
logger.error('ncnn support is not available.')
exit(-1)
from mmdeploy.apis.ncnn import get_output_model_file, onnx2ncnn
backend_files = []
for onnx_path in onnx_files:
model_param_path, model_bin_path = get_output_model_file(
onnx_path, args.work_dir)
create_process(
f'onnx2ncnn with {onnx_path}',
target=onnx2ncnn,
args=(onnx_path, model_param_path, model_bin_path),
kwargs=dict(),
ret_value=ret_value)
backend_files += [model_param_path, model_bin_path]
elif backend == Backend.OPENVINO:
from mmdeploy.apis.openvino import \
is_available as is_available_openvino
assert is_available_openvino(), \
'OpenVINO is not available, please install OpenVINO first.'
from mmdeploy.apis.openvino import (get_input_info_from_cfg,
get_output_model_file,
onnx2openvino)
openvino_files = []
for onnx_path in onnx_files:
model_xml_path = get_output_model_file(onnx_path, args.work_dir)
input_info = get_input_info_from_cfg(deploy_cfg)
output_names = get_ir_config(deploy_cfg).output_names
create_process(
f'onnx2openvino with {onnx_path}',
target=onnx2openvino,
args=(input_info, output_names, onnx_path, args.work_dir),
kwargs=dict(),
ret_value=ret_value)
openvino_files.append(model_xml_path)
backend_files = openvino_files
elif backend == Backend.PPLNN:
from mmdeploy.apis.pplnn import is_available as is_available_pplnn
assert is_available_pplnn(), \
'PPLNN is not available, please install PPLNN first.'
from mmdeploy.apis.pplnn import onnx2pplnn
pplnn_files = []
for onnx_path in onnx_files:
algo_file = onnx_path.replace('.onnx', '.json')
model_inputs = get_model_inputs(deploy_cfg)
assert 'opt_shape' in model_inputs, 'Expect opt_shape ' \
'in deploy config for PPLNN'
# PPLNN accepts only 1 input shape for optimization,
# may get changed in the future
input_shapes = [model_inputs.opt_shape]
create_process(
f'onnx2pplnn with {onnx_path}',
target=onnx2pplnn,
args=(algo_file, onnx_path),
kwargs=dict(device=args.device, input_shapes=input_shapes),
ret_value=ret_value)
pplnn_files += [onnx_path, algo_file]
backend_files = pplnn_files
if args.test_img is None:
args.test_img = args.img
# visualize model of the backend
create_process(
f'visualize {backend.value} model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, backend_files, args.test_img,
args.device),
kwargs=dict(
backend=backend,
output_file=osp.join(args.work_dir, f'output_{backend.value}.jpg'),
show_result=args.show),
ret_value=ret_value)
# visualize pytorch model
create_process(
'visualize pytorch model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, [checkpoint_path],
args.test_img, args.device),
kwargs=dict(
backend=Backend.PYTORCH,
output_file=osp.join(args.work_dir, 'output_pytorch.jpg'),
show_result=args.show),
ret_value=ret_value)
logger.info('All process success.')
if __name__ == '__main__':
main()