148 lines
4.9 KiB
Python
148 lines
4.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os
|
|
from tempfile import NamedTemporaryFile, TemporaryDirectory
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
|
|
import mmdeploy.backend.onnxruntime as ort_apis
|
|
from mmdeploy.apis import build_task_processor
|
|
from mmdeploy.codebase import import_codebase
|
|
from mmdeploy.utils import Backend, Codebase, Task, load_config
|
|
from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper
|
|
|
|
try:
|
|
import_codebase(Codebase.MMPOSE)
|
|
except ImportError:
|
|
pytest.skip(
|
|
f'{Codebase.MMPOSE.value} is not installed.', allow_module_level=True)
|
|
|
|
model_cfg_path = 'tests/test_codebase/test_mmpose/data/model.py'
|
|
model_cfg = load_config(model_cfg_path)[0]
|
|
deploy_cfg = mmcv.Config(
|
|
dict(
|
|
backend_config=dict(type='onnxruntime'),
|
|
codebase_config=dict(type='mmpose', task='PoseDetection'),
|
|
onnx_config=dict(
|
|
type='onnx',
|
|
export_params=True,
|
|
keep_initializers_as_inputs=False,
|
|
opset_version=11,
|
|
save_file='end2end.onnx',
|
|
input_names=['input'],
|
|
output_names=['output'],
|
|
input_shape=None)))
|
|
|
|
onnx_file = NamedTemporaryFile(suffix='.onnx').name
|
|
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
|
|
img_shape = (192, 256)
|
|
heatmap_shape = (48, 64)
|
|
# mmpose.apis.inference.LoadImage uses opencv, needs float32 in
|
|
# cv2.cvtColor.
|
|
img = np.random.rand(*img_shape, 3).astype(np.float32)
|
|
num_output_channels = model_cfg['data_cfg']['num_output_channels']
|
|
|
|
|
|
def test_create_input():
|
|
deploy_cfg = mmcv.Config(
|
|
dict(
|
|
backend_config=dict(type=Backend.ONNXRUNTIME.value),
|
|
codebase_config=dict(
|
|
type=Codebase.MMPOSE.value, task=Task.POSE_DETECTION.value),
|
|
onnx_config=dict(
|
|
type='onnx',
|
|
export_params=True,
|
|
keep_initializers_as_inputs=False,
|
|
opset_version=11,
|
|
save_file='end2end.onnx',
|
|
input_names=['input'],
|
|
output_names=['output'],
|
|
input_shape=None)))
|
|
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
|
|
inputs = task_processor.create_input(img, input_shape=img_shape)
|
|
assert isinstance(inputs, tuple) and len(inputs) == 2
|
|
|
|
|
|
def test_init_pytorch_model():
|
|
from mmpose.models.detectors.base import BasePose
|
|
model = task_processor.init_pytorch_model(None)
|
|
assert isinstance(model, BasePose)
|
|
|
|
|
|
@pytest.fixture
|
|
def backend_model():
|
|
from mmdeploy.backend.onnxruntime import ORTWrapper
|
|
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
|
|
wrapper = SwitchBackendWrapper(ORTWrapper)
|
|
wrapper.set(outputs={
|
|
'output': torch.rand(1, num_output_channels, *heatmap_shape),
|
|
})
|
|
|
|
yield task_processor.init_backend_model([''])
|
|
|
|
wrapper.recover()
|
|
|
|
|
|
def test_init_backend_model(backend_model):
|
|
assert isinstance(backend_model, torch.nn.Module)
|
|
|
|
|
|
def test_run_inference(backend_model):
|
|
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
|
|
results = task_processor.run_inference(backend_model, input_dict)
|
|
assert results is not None
|
|
|
|
|
|
def test_visualize(backend_model):
|
|
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
|
|
results = task_processor.run_inference(backend_model, input_dict)
|
|
with TemporaryDirectory() as dir:
|
|
filename = dir + 'tmp.jpg'
|
|
task_processor.visualize(backend_model, img, results[0], filename, '')
|
|
assert os.path.exists(filename)
|
|
|
|
|
|
def test_get_tensor_from_input():
|
|
input_data = {'img': torch.ones(3, 4, 5)}
|
|
inputs = task_processor.get_tensor_from_input(input_data)
|
|
assert torch.equal(inputs, torch.ones(3, 4, 5))
|
|
|
|
|
|
def test_get_partition_cfg():
|
|
try:
|
|
_ = task_processor.get_partition_cfg(partition_type='')
|
|
except NotImplementedError:
|
|
pass
|
|
|
|
|
|
def test_get_model_name():
|
|
model_name = task_processor.get_model_name()
|
|
assert isinstance(model_name, str) and model_name is not None
|
|
|
|
|
|
def test_build_dataset_and_dataloader():
|
|
from torch.utils.data import DataLoader, Dataset
|
|
dataset = task_processor.build_dataset(
|
|
dataset_cfg=model_cfg, dataset_type='test')
|
|
assert isinstance(dataset, Dataset), 'Failed to build dataset'
|
|
dataloader = task_processor.build_dataloader(dataset, 1, 1)
|
|
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
|
|
|
|
|
|
def test_single_gpu_test_and_evaluate():
|
|
from mmcv.parallel import MMDataParallel
|
|
dataset = task_processor.build_dataset(
|
|
dataset_cfg=model_cfg, dataset_type='test')
|
|
dataloader = task_processor.build_dataloader(dataset, 1, 1)
|
|
|
|
# Prepare dummy model
|
|
model = DummyModel(outputs=[torch.rand([1, 1000])])
|
|
model = MMDataParallel(model, device_ids=[0])
|
|
assert model is not None
|
|
# Run test
|
|
outputs = task_processor.single_gpu_test(model, dataloader)
|
|
assert outputs is not None
|
|
task_processor.evaluate_outputs(model_cfg, outputs, dataset)
|