mmdeploy/tools/deploy.py

365 lines
13 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import logging
import os
import os.path as osp
from functools import partial
import mmcv
import torch.multiprocessing as mp
from torch.multiprocessing import Process, set_start_method
from mmdeploy.apis import (create_calib_input_data, extract_model,
get_predefined_partition_cfg, torch2onnx,
torch2torchscript, visualize_model)
from mmdeploy.apis.core import PIPELINE_MANAGER
from mmdeploy.backend.sdk.export_info import export2SDK
from mmdeploy.utils import (IR, Backend, get_backend, get_calib_filename,
get_ir_config, get_model_inputs,
get_partition_config, get_root_logger, load_config,
target_wrapper)
def parse_args():
parser = argparse.ArgumentParser(description='Export model to backends.')
parser.add_argument('deploy_cfg', help='deploy config path')
parser.add_argument('model_cfg', help='model config path')
parser.add_argument('checkpoint', help='model checkpoint path')
parser.add_argument('img', help='image used to convert model model')
parser.add_argument(
'--test-img', default=None, help='image used to test model')
parser.add_argument(
'--work-dir',
default=os.getcwd(),
help='the dir to save logs and models')
parser.add_argument(
'--calib-dataset-cfg',
help='dataset config path used to calibrate in int8 mode. If not \
specified, it will use "val" dataset in model config instead.',
default=None)
parser.add_argument(
'--device', help='device used for conversion', default='cpu')
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
parser.add_argument(
'--show', action='store_true', help='Show detection outputs')
parser.add_argument(
'--dump-info', action='store_true', help='Output information for SDK')
parser.add_argument(
'--quant-image-dir',
default=None,
help='Image directory for quantize model.')
parser.add_argument(
'--quant', action='store_true', help='Quantize model to low bit.')
args = parser.parse_args()
return args
def create_process(name, target, args, kwargs, ret_value=None):
logger = get_root_logger()
logger.info(f'{name} start.')
log_level = logger.level
wrap_func = partial(target_wrapper, target, log_level, ret_value)
process = Process(target=wrap_func, args=args, kwargs=kwargs)
process.start()
process.join()
if ret_value is not None:
if ret_value.value != 0:
logger.error(f'{name} failed.')
exit(1)
else:
logger.info(f'{name} success.')
def torch2ir(ir_type: IR):
"""Return the conversion function from torch to the intermediate
representation.
Args:
ir_type (IR): The type of the intermediate representation.
"""
if ir_type == IR.ONNX:
return torch2onnx
elif ir_type == IR.TORCHSCRIPT:
return torch2torchscript
else:
raise KeyError(f'Unexpected IR type {ir_type}')
def main():
args = parse_args()
set_start_method('spawn')
logger = get_root_logger()
log_level = logging.getLevelName(args.log_level)
logger.setLevel(log_level)
pipeline_funcs = [
torch2onnx, torch2torchscript, extract_model, create_calib_input_data
]
PIPELINE_MANAGER.enable_multiprocess(True, pipeline_funcs)
PIPELINE_MANAGER.set_log_level(log_level, pipeline_funcs)
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
checkpoint_path = args.checkpoint
quant = args.quant
quant_image_dir = args.quant_image_dir
# load deploy_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
# create work_dir if not
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
if args.dump_info:
export2SDK(deploy_cfg, model_cfg, args.work_dir, pth=checkpoint_path)
ret_value = mp.Value('d', 0, lock=False)
# convert to IR
ir_config = get_ir_config(deploy_cfg)
ir_save_file = ir_config['save_file']
ir_type = IR.get(ir_config['type'])
torch2ir(ir_type)(
args.img,
args.work_dir,
ir_save_file,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
device=args.device)
# convert backend
ir_files = [osp.join(args.work_dir, ir_save_file)]
# partition model
partition_cfgs = get_partition_config(deploy_cfg)
if partition_cfgs is not None:
if 'partition_cfg' in partition_cfgs:
partition_cfgs = partition_cfgs.get('partition_cfg', None)
else:
assert 'type' in partition_cfgs
partition_cfgs = get_predefined_partition_cfg(
deploy_cfg, partition_cfgs['type'])
origin_ir_file = ir_files[0]
ir_files = []
for partition_cfg in partition_cfgs:
save_file = partition_cfg['save_file']
save_path = osp.join(args.work_dir, save_file)
start = partition_cfg['start']
end = partition_cfg['end']
dynamic_axes = partition_cfg.get('dynamic_axes', None)
extract_model(
origin_ir_file,
start,
end,
dynamic_axes=dynamic_axes,
save_file=save_path)
ir_files.append(save_path)
# calib data
calib_filename = get_calib_filename(deploy_cfg)
if calib_filename is not None:
calib_path = osp.join(args.work_dir, calib_filename)
create_calib_input_data(
calib_path,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
dataset_cfg=args.calib_dataset_cfg,
dataset_type='val',
device=args.device)
backend_files = ir_files
# convert backend
backend = get_backend(deploy_cfg)
if backend == Backend.TENSORRT:
model_params = get_model_inputs(deploy_cfg)
assert len(model_params) == len(ir_files)
from mmdeploy.apis.tensorrt import is_available as trt_is_available
assert trt_is_available(
), 'TensorRT is not available,' \
+ ' please install TensorRT and build TensorRT custom ops first.'
from mmdeploy.apis.tensorrt import onnx2tensorrt
PIPELINE_MANAGER.enable_multiprocess(True, [onnx2tensorrt])
PIPELINE_MANAGER.set_log_level(logging.INFO, [onnx2tensorrt])
backend_files = []
for model_id, model_param, onnx_path in zip(
range(len(ir_files)), model_params, ir_files):
onnx_name = osp.splitext(osp.split(onnx_path)[1])[0]
save_file = model_param.get('save_file', onnx_name + '.engine')
partition_type = 'end2end' if partition_cfgs is None \
else onnx_name
onnx2tensorrt(
args.work_dir,
save_file,
model_id,
deploy_cfg_path,
onnx_path,
device=args.device,
partition_type=partition_type)
backend_files.append(osp.join(args.work_dir, save_file))
elif backend == Backend.NCNN:
from mmdeploy.apis.ncnn import is_available as is_available_ncnn
if not is_available_ncnn():
logger.error('ncnn support is not available.')
exit(1)
import mmdeploy.apis.ncnn as ncnn_api
from mmdeploy.apis.ncnn import get_output_model_file
PIPELINE_MANAGER.set_log_level(log_level, [ncnn_api.from_onnx])
backend_files = []
for onnx_path in ir_files:
model_param_path, model_bin_path = get_output_model_file(
onnx_path, args.work_dir)
onnx_name = osp.splitext(osp.split(onnx_path)[1])[0]
ncnn_api.from_onnx(onnx_path, osp.join(args.work_dir, onnx_name))
if quant:
from onnx2ncnn_quant_table import get_table
from mmdeploy.apis.ncnn import get_quant_model_file, ncnn2int8
deploy_cfg, model_cfg = load_config(deploy_cfg_path,
model_cfg_path)
quant_onnx, quant_table, quant_param, quant_bin = get_quant_model_file( # noqa: E501
onnx_path, args.work_dir)
create_process(
'ncnn quant table',
target=get_table,
args=(onnx_path, deploy_cfg, model_cfg, quant_onnx,
quant_table, quant_image_dir),
kwargs=dict(),
ret_value=ret_value)
create_process(
'ncnn_int8',
target=ncnn2int8,
args=(model_param_path, model_bin_path, quant_table,
quant_param, quant_bin),
kwargs=dict(),
ret_value=ret_value)
backend_files += [quant_param, quant_bin]
else:
backend_files += [model_param_path, model_bin_path]
elif backend == Backend.OPENVINO:
from mmdeploy.apis.openvino import \
is_available as is_available_openvino
assert is_available_openvino(), \
'OpenVINO is not available, please install OpenVINO first.'
import mmdeploy.apis.openvino as openvino_api
from mmdeploy.apis.openvino import (get_input_info_from_cfg,
get_mo_options_from_cfg,
get_output_model_file)
PIPELINE_MANAGER.set_log_level(log_level, [openvino_api.from_onnx])
openvino_files = []
for onnx_path in ir_files:
model_xml_path = get_output_model_file(onnx_path, args.work_dir)
input_info = get_input_info_from_cfg(deploy_cfg)
output_names = get_ir_config(deploy_cfg).output_names
mo_options = get_mo_options_from_cfg(deploy_cfg)
openvino_api.from_onnx(onnx_path, args.work_dir, input_info,
output_names, mo_options)
openvino_files.append(model_xml_path)
backend_files = openvino_files
elif backend == Backend.PPLNN:
from mmdeploy.apis.pplnn import is_available as is_available_pplnn
assert is_available_pplnn(), \
'PPLNN is not available, please install PPLNN first.'
from mmdeploy.apis.pplnn import from_onnx
pplnn_pipeline_funcs = [from_onnx]
PIPELINE_MANAGER.set_log_level(logging.INFO, pplnn_pipeline_funcs)
pplnn_files = []
for onnx_path in ir_files:
algo_file = onnx_path.replace('.onnx', '.json')
model_inputs = get_model_inputs(deploy_cfg)
assert 'opt_shape' in model_inputs, 'Expect opt_shape ' \
'in deploy config for PPLNN'
# PPLNN accepts only 1 input shape for optimization,
# may get changed in the future
input_shapes = [model_inputs.opt_shape]
algo_prefix = osp.splitext(algo_file)[0]
from_onnx(
onnx_path,
algo_prefix,
device=args.device,
input_shapes=input_shapes)
pplnn_files += [onnx_path, algo_file]
backend_files = pplnn_files
if args.test_img is None:
args.test_img = args.img
headless = False
# check headless or not for all platforms.
import tkinter
try:
tkinter.Tk()
except Exception:
headless = True
# for headless installation.
if not headless:
# visualize model of the backend
create_process(
f'visualize {backend.value} model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, backend_files,
args.test_img, args.device),
kwargs=dict(
backend=backend,
output_file=osp.join(args.work_dir,
f'output_{backend.value}.jpg'),
show_result=args.show),
ret_value=ret_value)
# visualize pytorch model
create_process(
'visualize pytorch model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, [checkpoint_path],
args.test_img, args.device),
kwargs=dict(
backend=Backend.PYTORCH,
output_file=osp.join(args.work_dir, 'output_pytorch.jpg'),
show_result=args.show),
ret_value=ret_value)
else:
logger.warning(
'\"visualize_model\" has been skipped may be because it\'s \
running on a headless device.')
logger.info('All process success.')
if __name__ == '__main__':
main()