mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* minor changes * support windows * fix GCC build * fix lint * reformat * fix Windows build * fix GCC build * search backend ops for onnxruntime * fix lint * fix lint * code clean-up * code clean-up * fix clang build * fix trt support * fix cmake for ncnn * fix cmake for openvino * fix SDK Python API * handle ops for other backends (ncnn, trt) * handle SDK Python API library location * robustify linkage * fix cuda * minor fix for openvino & ncnn * use CMAKE_CUDA_ARCHITECTURES if set * fix cuda preprocessor * fix misc * fix pplnn & pplcv, drop support for pplcv<0.6.0 * robustify cmake * update build.md (#2) * build dynamic modules as module library & fix demo (partially) * fix candidate path for mmdeploy_python * move "enable CUDA" to cmake config for demo * refine demo cmake * add comment * fix ubuntu build * revert docs/en/build.md * fix C API * fix lint * Windows build doc (#3) * check in docs related to mmdeploy build on windows * update build guide on windows platform * update build guide on windows platform * make path of thirdparty libraries consistent * make path consistency * correct build command for custom ops * correct build command for sdk * update sdk build instructions * update doc * correct build command * fix lint * correct build command and fix lint Co-authored-by: lvhan <lvhan@pjlab.org> * trailing whitespace (#4) * minor fix * fix sr sdk model * fix type deduction * fix cudaFree after driver shutting down * update ppl.cv installation warning (#5) * fix device allocator threshold & fix lint * update doc (#6) * update ppl.cv installation warning * missing 'git clone' Co-authored-by: chenxin <chenxin2@sensetime.com> Co-authored-by: zhangli <zhangli@sensetime.com> Co-authored-by: lvhan028 <lvhan_028@163.com> Co-authored-by: lvhan <lvhan@pjlab.org>
85 lines
3.1 KiB
C++
85 lines
3.1 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include "codebase/mmseg/mmseg.h"
|
|
#include "core/tensor.h"
|
|
#include "core/utils/device_utils.h"
|
|
#include "core/utils/formatter.h"
|
|
#include "opencv_utils.h"
|
|
#include "preprocess/transform/transform.h"
|
|
|
|
namespace mmdeploy::mmseg {
|
|
|
|
class ResizeMask : public MMSegmentation {
|
|
public:
|
|
explicit ResizeMask(const Value &cfg) : MMSegmentation(cfg) {
|
|
try {
|
|
classes_ = cfg["params"]["num_classes"].get<int>();
|
|
} catch (const std::exception &e) {
|
|
MMDEPLOY_ERROR("no ['params']['num_classes'] is specified in cfg: {}", cfg);
|
|
throw_exception(eInvalidArgument);
|
|
}
|
|
}
|
|
|
|
Result<Value> operator()(const Value &preprocess_result, const Value &inference_result) {
|
|
MMDEPLOY_DEBUG("preprocess: {}\ninference: {}", preprocess_result, inference_result);
|
|
|
|
auto mask = inference_result["output"].get<Tensor>();
|
|
MMDEPLOY_DEBUG("tensor.name: {}, tensor.shape: {}, tensor.data_type: {}", mask.name(),
|
|
mask.shape(), mask.data_type());
|
|
if (!(mask.shape().size() == 4 && mask.shape(0) == 1 && mask.shape(1) == 1)) {
|
|
MMDEPLOY_ERROR("unsupported `output` tensor, shape: {}", mask.shape());
|
|
return Status(eNotSupported);
|
|
}
|
|
|
|
auto height = (int)mask.shape(2);
|
|
auto width = (int)mask.shape(3);
|
|
auto input_height = preprocess_result["img_metas"]["ori_shape"][1].get<int>();
|
|
auto input_width = preprocess_result["img_metas"]["ori_shape"][2].get<int>();
|
|
Device host{"cpu"};
|
|
OUTCOME_TRY(auto host_tensor, MakeAvailableOnDevice(mask, host, stream_));
|
|
OUTCOME_TRY(stream_.Wait());
|
|
if (mask.data_type() == DataType::kINT64) {
|
|
// change kINT64 to 2 INT32
|
|
TensorDesc desc{
|
|
host_tensor.device(), DataType::kINT32, {1, 2, height, width}, host_tensor.name()};
|
|
Tensor _host_tensor(desc, mask.buffer());
|
|
return MaskResize(_host_tensor, input_height, input_width);
|
|
} else if (mask.data_type() == DataType::kINT32) {
|
|
return MaskResize(host_tensor, input_height, input_width);
|
|
} else {
|
|
MMDEPLOY_ERROR("unsupported `output` tensor, dtype: {}", (int)mask.data_type());
|
|
return Status(eNotSupported);
|
|
}
|
|
}
|
|
|
|
private:
|
|
Result<Value> MaskResize(Tensor &tensor, int dst_height, int dst_width) {
|
|
auto channel = tensor.shape(1);
|
|
auto height = tensor.shape(2);
|
|
auto width = tensor.shape(3);
|
|
|
|
// reshape tensor to convert it to cv::Mat
|
|
tensor.Reshape({1, height, width, channel});
|
|
auto mat = cpu::Tensor2CVMat(tensor);
|
|
auto dst = cpu::Resize(mat, dst_height, dst_width, "nearest");
|
|
if (channel == 1) {
|
|
auto output_tensor = cpu::CVMat2Tensor(dst);
|
|
SegmentorOutput output{output_tensor, dst_height, dst_width, classes_};
|
|
return to_value(output);
|
|
} else {
|
|
cv::Mat _dst;
|
|
cv::extractChannel(dst, _dst, 0);
|
|
auto output_tensor = cpu::CVMat2Tensor(_dst);
|
|
SegmentorOutput output{output_tensor, dst_height, dst_width, classes_};
|
|
return to_value(output);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
int classes_{};
|
|
};
|
|
|
|
REGISTER_CODEBASE_COMPONENT(MMSegmentation, ResizeMask);
|
|
|
|
} // namespace mmdeploy::mmseg
|