mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* add python API for detector * integrate detection * add python segmentor * add segmentation support * add classifier, text-detector, text-recognizer and restorer * integrate classifier * integrate textdet, textrecog and restorer * simplify * add inst-seg * fix inst-seg * integrate inst-seg * Moidfy _build_wrapper * better pipeline substitution * use registry for backend model creation * build Python module according to C API targets * minor fix * move sdk data pipeline to backend_config * remove debugging lines * add docstring for SDKEnd2EndModel * fix type hint * fix lint * fix lint * insert build/lib to sys.path Co-authored-by: SingleZombie <singlezombie@163.com>
84 lines
2.7 KiB
C++
84 lines
2.7 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include "detector.h"
|
|
|
|
#include "common.h"
|
|
|
|
namespace mmdeploy {
|
|
|
|
class PyDetector {
|
|
public:
|
|
PyDetector(const char *model_path, const char *device_name, int device_id) {
|
|
auto status = mmdeploy_detector_create_by_path(model_path, device_name, device_id, &handle_);
|
|
if (status != MM_SUCCESS) {
|
|
throw std::runtime_error("failed to create detector");
|
|
}
|
|
}
|
|
py::list Apply(const std::vector<PyImage> &imgs) {
|
|
std::vector<mm_mat_t> mats;
|
|
mats.reserve(imgs.size());
|
|
for (const auto &img : imgs) {
|
|
auto mat = GetMat(img);
|
|
mats.push_back(mat);
|
|
}
|
|
mm_detect_t *detection{};
|
|
int *result_count{};
|
|
auto status =
|
|
mmdeploy_detector_apply(handle_, mats.data(), (int)mats.size(), &detection, &result_count);
|
|
if (status != MM_SUCCESS) {
|
|
throw std::runtime_error("failed to apply detector, code: " + std::to_string(status));
|
|
}
|
|
auto output = py::list{};
|
|
auto result = detection;
|
|
for (int i = 0; i < mats.size(); ++i) {
|
|
auto bboxes = py::array_t<float>({result_count[i], 5});
|
|
auto labels = py::array_t<int>(result_count[i]);
|
|
auto masks = std::vector<py::array_t<uint8_t>>{};
|
|
masks.reserve(result_count[i]);
|
|
for (int j = 0; j < result_count[i]; ++j, ++result) {
|
|
auto bbox = bboxes.mutable_data(j);
|
|
bbox[0] = result->bbox.left;
|
|
bbox[1] = result->bbox.top;
|
|
bbox[2] = result->bbox.right;
|
|
bbox[3] = result->bbox.bottom;
|
|
bbox[4] = result->score;
|
|
labels.mutable_at(j) = result->label_id;
|
|
if (result->mask) {
|
|
py::array_t<uint8_t> mask({result->mask->height, result->mask->width});
|
|
memcpy(mask.mutable_data(), result->mask->data, mask.nbytes());
|
|
masks.push_back(std::move(mask));
|
|
} else {
|
|
masks.emplace_back();
|
|
}
|
|
}
|
|
output.append(py::make_tuple(std::move(bboxes), std::move(labels), std::move(masks)));
|
|
}
|
|
mmdeploy_detector_release_result(detection, result_count, (int)mats.size());
|
|
return output;
|
|
}
|
|
~PyDetector() {
|
|
mmdeploy_detector_destroy(handle_);
|
|
handle_ = {};
|
|
}
|
|
|
|
private:
|
|
mm_handle_t handle_{};
|
|
};
|
|
|
|
static void register_python_detector(py::module &m) {
|
|
py::class_<PyDetector>(m, "Detector")
|
|
.def(py::init([](const char *model_path, const char *device_name, int device_id) {
|
|
return std::make_unique<PyDetector>(model_path, device_name, device_id);
|
|
}))
|
|
.def("__call__", &PyDetector::Apply);
|
|
}
|
|
|
|
class PythonDetectorRegisterer {
|
|
public:
|
|
PythonDetectorRegisterer() { gPythonBindings().emplace("detector", register_python_detector); }
|
|
};
|
|
|
|
static PythonDetectorRegisterer python_detector_registerer;
|
|
|
|
} // namespace mmdeploy
|