76 lines
2.3 KiB
C++
76 lines
2.3 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include "text_detector.h"
|
|
|
|
#include "common.h"
|
|
|
|
namespace mmdeploy {
|
|
|
|
class PyTextDetector {
|
|
public:
|
|
PyTextDetector(const char *model_path, const char *device_name, int device_id) {
|
|
auto status =
|
|
mmdeploy_text_detector_create_by_path(model_path, device_name, device_id, &handle_);
|
|
if (status != MM_SUCCESS) {
|
|
throw std::runtime_error("failed to create text_detector");
|
|
}
|
|
}
|
|
std::vector<py::array_t<float>> Apply(const std::vector<PyImage> &imgs) {
|
|
std::vector<mm_mat_t> mats;
|
|
mats.reserve(imgs.size());
|
|
for (const auto &img : imgs) {
|
|
auto mat = GetMat(img);
|
|
mats.push_back(mat);
|
|
}
|
|
mm_text_detect_t *detection{};
|
|
int *result_count{};
|
|
auto status = mmdeploy_text_detector_apply(handle_, mats.data(), (int)mats.size(), &detection,
|
|
&result_count);
|
|
if (status != MM_SUCCESS) {
|
|
throw std::runtime_error("failed to apply text_detector, code: " + std::to_string(status));
|
|
}
|
|
auto output = std::vector<py::array_t<float>>{};
|
|
auto result = detection;
|
|
for (int i = 0; i < mats.size(); ++i) {
|
|
auto bboxes = py::array_t<float>({result_count[i], 9});
|
|
for (int j = 0; j < result_count[i]; ++j, ++result) {
|
|
auto data = bboxes.mutable_data(j);
|
|
for (const auto &p : result->bbox) {
|
|
*data++ = p.x;
|
|
*data++ = p.y;
|
|
}
|
|
*data++ = result->score;
|
|
}
|
|
output.push_back(std::move(bboxes));
|
|
}
|
|
mmdeploy_text_detector_release_result(detection, result_count, (int)mats.size());
|
|
return output;
|
|
}
|
|
~PyTextDetector() {
|
|
mmdeploy_text_detector_destroy(handle_);
|
|
handle_ = {};
|
|
}
|
|
|
|
private:
|
|
mm_handle_t handle_{};
|
|
};
|
|
|
|
static void register_python_text_detector(py::module &m) {
|
|
py::class_<PyTextDetector>(m, "TextDetector")
|
|
.def(py::init([](const char *model_path, const char *device_name, int device_id) {
|
|
return std::make_unique<PyTextDetector>(model_path, device_name, device_id);
|
|
}))
|
|
.def("__call__", &PyTextDetector::Apply);
|
|
}
|
|
|
|
class PythonTextDetectorRegisterer {
|
|
public:
|
|
PythonTextDetectorRegisterer() {
|
|
gPythonBindings().emplace("text_detector", register_python_text_detector);
|
|
}
|
|
};
|
|
|
|
static PythonTextDetectorRegisterer python_text_detector_registerer;
|
|
|
|
} // namespace mmdeploy
|