mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* docs(docs/zh_cn): add doc and link checker * docs(REAME): update * docs(docs/zh_cn): update * docs(benchmark): update table * docs(zh_cn/benchmark): update link * CI(docs): update link check * ci(doc): update checker * docs(zh_cn): update * style(ci): remove useless para * style(ci): update * docs(zh_cn): update * docs(benchmark.md): fix mobilnet link error * docs(docs/zh_cn): add doc and link checker * docs(REAME): update * docs(docs/zh_cn): update * docs(benchmark): update table * docs(zh_cn/benchmark): update link * CI(docs): update link check * ci(doc): update checker * docs(zh_cn): update * style(ci): remove useless para * style(ci): update * docs(zh_cn): update * docs(benchmark.md): fix mobilnet link error * docs(zh_cn/do_regression_test.md): rebase * docs(docs/zh_cn): add doc and link checker * Update README_zh-CN.md * Update README_zh-CN.md * Update index.rst * Update check-doc-link.yml * [Fix] Fix ci (#426) * fix ci * add nvidia key * remote torch * recover pytorch * ci(codecov): ignore ci * docs(zh_cn): add get_started.md * docs(zh_cn): fix review advice * docs(readthedocs): update * docs(zh_CN): update * docs(zh_CN): revert * fix(docs): review advices * fix(docs): review advices * fix(docs): review Co-authored-by: q.yao <streetyao@live.com>
1.8 KiB
1.8 KiB
MMPose Support
MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project.
MMPose installation tutorial
Please refer to official installation guide to install the codebase.
MMPose models support
Model | Task | ONNX Runtime | TensorRT | ncnn | PPLNN | OpenVINO | Model config |
---|---|---|---|---|---|---|---|
HRNet | PoseDetection | Y | Y | Y | N | Y | config |
MSPN | PoseDetection | Y | Y | Y | N | Y | config |
LiteHRNet | PoseDetection | Y | Y | Y | N | Y | config |
Example
python tools/deploy.py \
configs/mmpose/posedetection_tensorrt_static-256x192.py \
$MMPOSE_DIR/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py \
$MMPOSE_DIR/checkpoints/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth \
$MMDEPLOY_DIR/demo/resources/human-pose.jpg \
--work-dir work-dirs/mmpose/topdown/hrnet/trt \
--device cuda
Note
- Usually, mmpose models need some extra information for the input image, but we can't get it directly. So, when exporting the model, you can use
$MMDEPLOY_DIR/demo/resources/human-pose.jpg
as input.
Reminder
None
FAQs
None