mmdeploy/configs/mmdet/detection/detection_rknn-fp16_static-...

35 lines
1.2 KiB
Python

_base_ = ['../_base_/base_static.py', '../../_base_/backends/rknn.py']
onnx_config = dict(input_shape=[320, 320])
codebase_config = dict(model_type='rknn')
backend_config = dict(
input_size_list=[[3, 320, 320]],
quantization_config=dict(do_quantization=False))
# # yolov3, yolox for rknn-toolkit and rknn-toolkit2
# partition_config = dict(
# type='rknn', # the partition policy name
# apply_marks=True, # should always be set to True
# partition_cfg=[
# dict(
# save_file='model.onnx', # name to save the partitioned onnx
# start=['detector_forward:input'], # [mark_name:input, ...]
# end=['yolo_head:input'], # [mark_name:output, ...]
# output_names=[f'pred_maps.{i}' for i in range(3)]) # out names
# ])
# # retinanet, ssd, fsaf for rknn-toolkit2
# partition_config = dict(
# type='rknn', # the partition policy name
# apply_marks=True,
# partition_cfg=[
# dict(
# save_file='model.onnx',
# start='detector_forward:input',
# end=['BaseDenseHead:output'],
# output_names=[f'BaseDenseHead.cls.{i}' for i in range(5)] +
# [f'BaseDenseHead.loc.{i}' for i in range(5)])
# ])