mmdeploy/docs/zh_cn/04-supported-codebases/mmseg.md

238 lines
13 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# MMSegmentation 模型部署
- [MMSegmentation 模型部署](#mmsegmentation-模型部署)
- [安装](#安装)
- [安装 mmseg](#安装-mmseg)
- [安装 mmdeploy](#安装-mmdeploy)
- [模型转换](#模型转换)
- [模型规范](#模型规范)
- [模型推理](#模型推理)
- [后端模型推理](#后端模型推理)
- [SDK 模型推理](#sdk-模型推理)
- [模型支持列表](#模型支持列表)
- [注意事项](#注意事项)
______________________________________________________________________
[MMSegmentation](https://github.com/open-mmlab/mmsegmentation/tree/1.x) 又称`mmseg`,是一个基于 PyTorch 的开源对象分割工具箱。它是 [OpenMMLab](https://openmmlab.com/) 项目的一部分。
## 安装
### 安装 mmseg
请参考[官网安装指南](https://mmsegmentation.readthedocs.io/en/1.x/get_started.html)。
### 安装 mmdeploy
mmdeploy 有以下几种安装方式:
**方式一:** 安装预编译包
> 待 mmdeploy 正式发布 1.x再补充
**方式二:** 一键式脚本安装
如果部署平台是 **Ubuntu 18.04 及以上版本** 请参考[脚本安装说明](../01-how-to-build/build_from_script.md),完成安装过程。
比如,以下命令可以安装 mmdeploy 以及配套的推理引擎——`ONNX Runtime`.
```shell
git clone --recursive -b 1.x https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH
```
**说明**:
-`$(pwd)/build/lib` 添加到 `PYTHONPATH`,目的是为了加载 mmdeploy SDK python 包 `mmdeploy_python`,在章节 [SDK模型推理](#sdk模型推理)中讲述其用法。
- 在[使用 ONNX Runtime推理后端模型](#后端模型推理)时,需要加载自定义算子库,需要把 ONNX Runtime 库的路径加入环境变量 `LD_LIBRARY_PATH`中。
**方式三:** 源码安装
在方式一、二都满足不了的情况下,请参考[源码安装说明](../01-how-to-build/build_from_source.md) 安装 mmdeploy 以及所需推理引擎。
## 模型转换
你可以使用 [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/1.x/tools/deploy.py) 把 mmseg 模型一键式转换为推理后端模型。
该工具的详细使用说明请参考[这里](https://github.com/open-mmlab/mmdeploy/tree/1.x/docs/en/02-how-to-run/convert_model.md#usage).
以下,我们将演示如何把 `unet` 转换为 onnx 模型。
```shell
cd mmdeploy
# download unet model from mmseg model zoo
mim download mmsegmentation --config unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024 --dest .
# convert mmseg model to onnxruntime model with dynamic shape
python tools/deploy.py \
configs/mmseg/segmentation_onnxruntime_dynamic.py \
unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py \
fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth \
demo/resources/cityscapes.png \
--work-dir mmdeploy_models/mmseg/ort \
--device cpu \
--show \
--dump-info
```
转换的关键之一是使用正确的配置文件。项目中已内置了各后端部署[配置文件](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmseg)。
文件的命名模式是:
```
segmentation_{backend}-{precision}_{static | dynamic}_{shape}.py
```
其中:
- **{backend}:** 推理后端名称。比如onnxruntime、tensorrt、pplnn、ncnn、openvino、coreml 等等
- **{precision}:** 推理精度。比如fp16、int8。不填表示 fp32
- **{static | dynamic}:** 动态、静态 shape
- **{shape}:** 模型输入的 shape 或者 shape 范围
在上例中,你也可以把 `unet` 转为其他后端模型。比如使用`segmentation_tensorrt-fp16_dynamic-512x1024-2048x2048.py`,把模型转为 tensorrt-fp16 模型。
```{tip}
当转 tensorrt 模型时, --device 需要被设置为 "cuda"
```
## 模型规范
在使用转换后的模型进行推理之前,有必要了解转换结果的结构。 它存放在 `--work-dir` 指定的路路径下。
上例中的`mmdeploy_models/mmseg/ort`,结构如下:
```
mmdeploy_models/mmseg/ort
├── deploy.json
├── detail.json
├── end2end.onnx
└── pipeline.json
```
重要的是:
- **end2end.onnx**: 推理引擎文件。可用 ONNX Runtime 推理
- \***.json**: mmdeploy SDK 推理所需的 meta 信息
整个文件夹被定义为**mmdeploy SDK model**。换言之,**mmdeploy SDK model**既包括推理引擎,也包括推理 meta 信息。
## 模型推理
### 后端模型推理
以上述模型转换后的 `end2end.onnx` 为例,你可以使用如下代码进行推理:
```python
from mmdeploy.apis.utils import build_task_processor
from mmdeploy.utils import get_input_shape, load_config
import torch
deploy_cfg = 'configs/mmseg/segmentation_onnxruntime_dynamic.py'
model_cfg = './unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py'
device = 'cpu'
backend_model = ['./mmdeploy_models/mmseg/ort/end2end.onnx']
image = './demo/resources/cityscapes.png'
# read deploy_cfg and model_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
# build task and backend model
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
model = task_processor.build_backend_model(backend_model)
# process input image
input_shape = get_input_shape(deploy_cfg)
model_inputs, _ = task_processor.create_input(image, input_shape)
# do model inference
with torch.no_grad():
result = model.test_step(model_inputs)
# visualize results
task_processor.visualize(
image=image,
model=model,
result=result[0],
window_name='visualize',
output_file='./output_segmentation.png')
```
### SDK 模型推理
你也可以参考如下代码,对 SDK model 进行推理:
```python
from mmdeploy_python import Segmentor
import cv2
import numpy as np
img = cv2.imread('./demo/resources/cityscapes.png')
# create a classifier
segmentor = Segmentor(model_path='./mmdeploy_models/mmseg/ort', device_name='cpu', device_id=0)
# perform inference
seg = segmentor(img)
# visualize inference result
## random a palette with size 256x3
palette = np.random.randint(0, 256, size=(256, 3))
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
# convert to BGR
color_seg = color_seg[..., ::-1]
img = img * 0.5 + color_seg * 0.5
img = img.astype(np.uint8)
cv2.imwrite('output_segmentation.png', img)
```
除了python APImmdeploy SDK 还提供了诸如 C、C++、C#、Java等多语言接口。
你可以参考[样例](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo)学习其他语言接口的使用方法。
## 模型支持列表
| Model | OnnxRuntime | TensorRT | ncnn | PPLNN | OpenVino |
| :------------------------------------------------------------------------------------------------------- | :---------: | :------: | :--: | :---: | :------: |
| [FCN](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/fcn) | Y | Y | Y | Y | Y |
| [PSPNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/pspnet)[\*](#static_shape) | Y | Y | Y | Y | Y |
| [DeepLabV3](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/deeplabv3) | Y | Y | Y | Y | Y |
| [DeepLabV3+](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/deeplabv3plus) | Y | Y | Y | Y | Y |
| [Fast-SCNN](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/fastscnn)[\*](#static_shape) | Y | Y | N | Y | Y |
| [UNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/unet) | Y | Y | Y | Y | Y |
| [ANN](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/ann)[\*](#static_shape) | Y | Y | N | N | N |
| [APCNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/apcnet) | Y | Y | Y | N | N |
| [BiSeNetV1](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/bisenetv1) | Y | Y | Y | N | Y |
| [BiSeNetV2](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/bisenetv2) | Y | Y | Y | N | Y |
| [CGNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/cgnet) | Y | Y | Y | N | Y |
| [DMNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/dmnet) | Y | N | N | N | N |
| [DNLNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/dnlnet) | Y | Y | Y | N | Y |
| [EMANet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/emanet) | Y | Y | N | N | Y |
| [EncNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/encnet) | Y | Y | N | N | Y |
| [ERFNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/erfnet) | Y | Y | Y | N | Y |
| [FastFCN](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/fastfcn) | Y | Y | Y | N | Y |
| [GCNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/gcnet) | Y | Y | N | N | N |
| [ICNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/icnet)[\*](#static_shape) | Y | Y | N | N | Y |
| [ISANet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/isanet)[\*](#static_shape) | Y | Y | N | N | Y |
| [NonLocal Net](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/nonlocal_net) | Y | Y | Y | N | Y |
| [OCRNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/ocrnet) | Y | Y | Y | N | Y |
| [PointRend](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/point_rend)[\*](#static_shape) | Y | Y | N | N | N |
| [Semantic FPN](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/sem_fpn) | Y | Y | Y | N | Y |
| [STDC](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/stdc) | Y | Y | Y | N | Y |
| [UPerNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/upernet)[\*](#static_shape) | Y | Y | N | N | N |
| [DANet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/danet) | Y | Y | N | N | Y |
| [Segmenter](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/segmenter)[\*](#static_shape) | Y | Y | Y | N | Y |
| [SegFormer](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/segformer)[\*](#static_shape) | Y | Y | N | N | Y |
| [SETR](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/setr) | Y | N | N | N | Y |
| [CCNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/ccnet) | N | N | N | N | N |
| [PSANet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/psanet) | N | N | N | N | N |
| [DPT](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/dpt) | N | N | N | N | N |
## 注意事项
- 所有 mmseg 模型仅支持 "whole" 推理模式。
- <i id=“static_shape”>PSPNetFast-SCNN</i> 仅支持静态输入,因为多数推理框架的 [nn.AdaptiveAvgPool2d](https://github.com/open-mmlab/mmsegmentation/blob/0c87f7a0c9099844eff8e90fa3db5b0d0ca02fee/mmseg/models/decode_heads/psp_head.py#L38) 不支持动态输入。
- 对于仅支持静态形状的模型,应使用静态形状的部署配置文件,例如 `configs/mmseg/segmentation_tensorrt_static-1024x2048.py`