q.yao 823ca38646
[Feature] Add NCNN mmdetection support (#49)
* first

* fix0

* fix1

* dirty work

* wip

* add allocator

* finally done!

* lint

* fix lint

* better gather

* better onnx2ncnn

* fix expand

* [Fix] NCNN TensorSlice op bugs (#42)

* fix custom ops support, fix multiple mark bug, add name mapping

* check if the value_info need to be added

* remove unnecessary print

* add nms implement

* two stage split wip

* add two stage split

* add split retinanet visualize

* add two stage split (wip)

* finish two stage split

* fix lint

* move parse string to mmdeploy.utils

* add calib data generator

* create calib dataset

* finish end2end int8

* add split two stage tensorrt visualize

* fix tensorslice bugs

* fix lint

* fix clang-format

* remove comments

* int param

* fix lint

Co-authored-by: grimoire <yaoqian@sensetime.com>

* add two stage ncnn support

* remove unused ops

* git unused config

* remove no_grad, should add in refactor

* add ncnn wrapper

* fix lint

* size return tuple

* Resolve grammar error

* Fix lint

* Trim Trailing Whitespace

* fix trim

* update wrapper

* remove logs

* remove

* csrc optimize

Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
2021-08-26 18:40:14 +08:00

199 lines
5.5 KiB
C++

#include "tensorslice.h"
#include <math.h>
#include "../ncnn_ops_definer.h"
namespace mmlab {
using namespace ncnn;
DEFINE_LAYER_CREATOR(TensorSlice)
DEFINE_NCNN_OPS(TensorSlice, TensorSlice)
TensorSlice::TensorSlice() {
one_blob_only = true;
support_inplace = false;
}
int TensorSlice::load_param(const ParamDict& pd) {
starts = pd.get(0, Mat());
ends = pd.get(1, Mat());
axes = pd.get(2, Mat());
steps = pd.get(3, Mat());
if (axes.w == 0) {
axes.create(starts.w);
int* axes_ptr = axes;
for (int i = 0; i < starts.w; i++) {
axes_ptr[i] = i;
}
}
if (steps.w == 0) {
steps.create(axes.w);
steps.fill(1);
}
return 0;
}
static inline int get_shape_by_axes(const Mat& blob, int axes, int dims) {
switch (dims - axes) {
case 0:
return blob.w;
case 1:
return blob.h;
case 2:
return blob.c;
default:
fprintf(stderr, "wrong axes %d!\n", axes);
return -1;
}
return 0;
}
int TensorSlice::forward(const Mat& bottom_blob, Mat& top_blob,
const Option& opt) const {
int dims = bottom_blob.dims;
size_t elemsize = bottom_blob.elemsize;
const int* start_ptr = starts;
const int* end_ptr = ends;
const float* axes_ptr = axes;
const int* step_ptr = steps;
if (starts.w > dims || ends.w > dims) {
fprintf(stderr, "start/end attributes shape error!\n");
return -100;
}
if (dims == 1) {
for (int i = 0; i < axes.w; i++) {
int positive_axis = axes_ptr[i] < 0 ? dims + axes_ptr[i] : axes_ptr[i];
int step = step_ptr[i];
std::vector<float> temp_val;
int start = start_ptr[i];
int end = end_ptr[i];
int cur = start;
if (step > 0) {
while (cur < end && cur < bottom_blob.w) {
temp_val.push_back(bottom_blob[cur]);
cur += step;
}
} else if (step < 0) {
while (cur > end && cur > 0) {
temp_val.push_back(bottom_blob[cur]);
cur += step;
}
} else {
fprintf(stderr, "step should not be 0!\n");
return -100;
}
top_blob.create(temp_val.size(), elemsize, opt.blob_allocator);
for (int i = 0; i < temp_val.size(); i++) {
top_blob[i] = temp_val[i];
}
}
return 0;
}
if (dims == 2) {
std::vector<std::vector<int> > active_indice;
std::vector<int> indices;
for (int i = 0; i < bottom_blob.h; i++) {
indices.push_back(i);
}
active_indice.push_back(indices);
indices.clear();
for (int i = 0; i < bottom_blob.w; i++) {
indices.push_back(i);
}
active_indice.push_back(indices);
for (int i = 0; i < axes.w; i++) {
int positive_axis = axes_ptr[i] < 0 ? dims + axes_ptr[i] : axes_ptr[i];
int step = step_ptr[i];
int start = start_ptr[i];
int end = end_ptr[i];
int dim_shape = get_shape_by_axes(bottom_blob, positive_axis, dims);
if (dim_shape < 0) {
return -1;
}
end = end < dim_shape ? end : dim_shape;
int cur = start;
std::vector<int> temp_indice;
if (step > 0) {
while (cur < end && cur < dim_shape) {
temp_indice.push_back(cur);
cur += step;
}
} else if (step < 0) {
while (cur > end && cur > 0) {
temp_indice.push_back(cur);
cur += step;
}
} else {
fprintf(stderr, "step should not be 0!\n");
return -100;
}
active_indice[positive_axis - 1] = temp_indice;
}
top_blob.create((int)active_indice[1].size(), (int)active_indice[0].size(),
elemsize, opt.blob_allocator);
for (int i = 0; i < active_indice[0].size(); i++) {
for (int j = 0; j < active_indice[1].size(); j++) {
top_blob.row(i)[j] =
bottom_blob.row(active_indice[0][i])[active_indice[1][j]];
}
}
return 0;
}
if (dims == 3) {
std::vector<std::vector<int> > active_indice;
std::vector<int> indices;
for (int i = 0; i < bottom_blob.c; i++) {
indices.push_back(i);
}
active_indice.push_back(indices);
indices.clear();
for (int i = 0; i < bottom_blob.h; i++) {
indices.push_back(i);
}
active_indice.push_back(indices);
indices.clear();
for (int i = 0; i < bottom_blob.w; i++) {
indices.push_back(i);
}
active_indice.push_back(indices);
for (int i = 0; i < axes.w; i++) {
int positive_axis = axes_ptr[i] < 0 ? dims + axes_ptr[i] : axes_ptr[i];
int step = step_ptr[i];
int start = start_ptr[i];
int end = end_ptr[i];
int cur = start;
std::vector<int> temp_indice;
if (step > 0) {
while (cur < end && cur < bottom_blob.w) {
temp_indice.push_back(cur);
cur += step;
}
} else if (step < 0) {
while (cur > end && cur > 0) {
temp_indice.push_back(cur);
cur += step;
}
} else {
fprintf(stderr, "step should not be 0!\n");
return -100;
}
active_indice[positive_axis] = temp_indice;
}
top_blob.create((int)active_indice[2].size(), (int)active_indice[1].size(),
(int)active_indice[0].size(), elemsize, opt.blob_allocator);
for (int i = 0; i < active_indice[0].size(); i++) {
for (int j = 0; j < active_indice[1].size(); j++) {
for (int k = 0; k < active_indice[2].size(); k++) {
top_blob.channel(i).row(j)[k] =
bottom_blob.channel(active_indice[0][i])
.row(active_indice[1][j])[active_indice[2][k]];
}
}
}
return 0;
}
return 0;
}
} // namespace mmlab